Beilstein Journal of Nanotechnology最新文献

筛选
英文 中文
Biomimetic nanocarriers: integrating natural functions for advanced therapeutic applications. 仿生纳米载体:整合自然功能的先进治疗应用。
IF 2.6 4区 材料科学
Beilstein Journal of Nanotechnology Pub Date : 2024-12-16 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.127
Hugo Felix Perini, Beatriz Sodré Matos, Carlo José Freire de Oliveira, Marcos Vinicius da Silva
{"title":"Biomimetic nanocarriers: integrating natural functions for advanced therapeutic applications.","authors":"Hugo Felix Perini, Beatriz Sodré Matos, Carlo José Freire de Oliveira, Marcos Vinicius da Silva","doi":"10.3762/bjnano.15.127","DOIUrl":"10.3762/bjnano.15.127","url":null,"abstract":"<p><p>Biomimetic nanocarriers, engineered to mimic the characteristics of native cells, offer a revolutionary approach in the treatment of various complex human diseases. This strategy enhances drug delivery by leveraging the innate properties of cellular components, thereby improving biocompatibility and targeting specificity. Biomimetic nanocarriers demonstrate significant advancements in drug delivery systems against cancer therapy, Alzheimer's disease, autoimmune diseases, and viral infections such as COVID-19. Here, we address the therapeutic applications of biomimetic nanocarriers and their promising strategy for personalized medicine.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1619-1626"},"PeriodicalIF":2.6,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665443/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142881034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Natural nanofibers embedded in the seed mucilage envelope: composite hydrogels with specific adhesive and frictional properties. 嵌入种子粘液包膜的天然纳米纤维:具有特殊粘附性和摩擦性的复合水凝胶。
IF 2.6 4区 材料科学
Beilstein Journal of Nanotechnology Pub Date : 2024-12-13 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.126
Agnieszka Kreitschitz, Stanislav N Gorb
{"title":"Natural nanofibers embedded in the seed mucilage envelope: composite hydrogels with specific adhesive and frictional properties.","authors":"Agnieszka Kreitschitz, Stanislav N Gorb","doi":"10.3762/bjnano.15.126","DOIUrl":"10.3762/bjnano.15.126","url":null,"abstract":"<p><p>The increasing interests in natural, biodegradable, non-toxic materials that can find application in diverse industry branches, for example, food, pharmacy, medicine, or materials engineering, has steered the attention of many scientists to plants, which are a known source of natural hydrogels. Natural hydrogels share some features with synthetic hydrogels, but are more easy to obtain and recycle. One of the main sources of such hydrogels are mucilaginous seeds and fruits, which produce after hydration a gel-like, transparent capsule, the so-called mucilage envelope. Mucilage serves several important biological functions, such as supporting seed germination, protecting seeds against pathogens and predators, and allowing the seed to attach to diverse surfaces (e.g., soil or animals). The attachment properties of mucilage are thus responsible for seed dispersal. Mucilage represents a hydrophilic, three-dimensional network of polysaccharides (cellulose, pectins, and hemicelluloses) and is able to absorb large amounts of water. Depending on the water content, mucilage can behave as an efficient lubricant or as strong glue. The current work attempts to summarise the achievements in the research on the mucilage envelope, primarily in the context of its structure and physical properties, as well as biological functions associated with these properties.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1603-1618"},"PeriodicalIF":2.6,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11650531/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142845738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Liver-targeting iron oxide nanoparticles and their complexes with plant extracts for biocompatibility. 肝脏靶向氧化铁纳米粒子及其与植物提取物的复合物的生物相容性。
IF 2.6 4区 材料科学
Beilstein Journal of Nanotechnology Pub Date : 2024-12-11 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.125
Shushanik A Kazaryan, Seda A Oganian, Gayane S Vardanyan, Anatolie S Sidorenko, Ashkhen A Hovhannisyan
{"title":"Liver-targeting iron oxide nanoparticles and their complexes with plant extracts for biocompatibility.","authors":"Shushanik A Kazaryan, Seda A Oganian, Gayane S Vardanyan, Anatolie S Sidorenko, Ashkhen A Hovhannisyan","doi":"10.3762/bjnano.15.125","DOIUrl":"10.3762/bjnano.15.125","url":null,"abstract":"<p><p>Thanks to their simple synthesis, controlled physical properties, and minimal toxicity, iron oxide nanoparticles (Fe<sub>3</sub>O<sub>4</sub> NPs) are widely used in many biomedical applications (e.g., bioimaging, drug delivery, biosensors, diagnostics, and theranostics). However, the use of NPs does not preclude the possibility of selective toxicity and undesirable effects, including accumulation in tissues and direct interaction with specific biological targets. This study evaluated the biocompatibility of Fe<sub>3</sub>O<sub>4</sub> NPs, <i>Teucrium polium</i> (<i>T. polium)</i> extract, rutin, and the corresponding complexes on the liver tissue of healthy white Wistar rats. The impact profile of the synthesized Fe<sub>3</sub>O<sub>4</sub> NPs (15 ± 4 nm), rutin, <i>T. polium</i> extract, and their complexes on biochemical markers of liver function (ALT, AST, ALP, GGT, HDL, LDL, total cholesterol, total protein, and albumin) and morphological indicators of rat liver was investigated. Fe<sub>3</sub>O<sub>4</sub> NPs, rutin, and <i>T. polium</i> extract do not show direct hepatotoxicity when administered intraperitoneally to rats, unlike their complexes. All agents exert a hypolipidemic effect by lowering LDL, despite maintaining the synthetic functions of the liver. Fe<sub>3</sub>O<sub>4</sub> NPs increase the activity of GPO, which is associated with their peroxidase-like properties. A multifaceted and diverse mechanism of action of all studied samples on the liver of Wistar rats was identified.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1593-1602"},"PeriodicalIF":2.6,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11650582/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142845549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facile synthesis of size-tunable L-carnosine-capped silver nanoparticles and their role in metal ion sensing and catalytic degradation of p-nitrophenol. 尺寸可调的l -肌肽包覆银纳米颗粒的合成及其在金属离子传感和对硝基苯酚催化降解中的作用。
IF 2.6 4区 材料科学
Beilstein Journal of Nanotechnology Pub Date : 2024-12-06 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.124
Akash Kumar, Ridhima Chadha, Abhishek Das, Nandita Maiti, Rayavarapu Raja Gopal
{"title":"Facile synthesis of size-tunable L-carnosine-capped silver nanoparticles and their role in metal ion sensing and catalytic degradation of <i>p</i>-nitrophenol.","authors":"Akash Kumar, Ridhima Chadha, Abhishek Das, Nandita Maiti, Rayavarapu Raja Gopal","doi":"10.3762/bjnano.15.124","DOIUrl":"10.3762/bjnano.15.124","url":null,"abstract":"<p><p>ʟ-Carnosine is a dipeptide with notable antioxidant, antiglycation, metal chelating, and neuroprotective properties. Despite its many biological roles, applying ʟ-carnosine as a capping agent in nanoparticle synthesis has remained underexplored. This study explores the potential of ʟ-carnosine in synthesizing tunable plasmonic silver nanoparticles (ʟ-car-AgNPs). The formation of ʟ-car-AgNPs was confirmed via UV-vis optical absorption spectroscopy, showing single and double plasmonic peaks, depending on the synthesis conditions. Physicochemical characterization using TEM, FTIR, and Raman spectroscopy, as well as EDX and XRD revealed controlled aggregation, successful capping, and crystalline growth of the ʟ-car-AgNPs. The ʟ-car-AgNPs exhibited promising sensing capabilities with limits of detection of 141.79 ppb (1.2 μM) for Cd<sup>2+</sup>, 131.33 ppb (0.63 μM) for Pb<sup>2+</sup>, 215.35 ppb (2.8 μM) for As<sup>3+</sup>, and 245.49 ppb (4.7 μM) for Cr<sup>3+</sup>. Additionally, these nanoparticles demonstrated catalytic activity regarding the degradation of <i>p</i>-nitrophenol (P-NP), achieving complete degradation of 0.25 and 1 mM solutions within 5 and 10 min, respectively. This study reveals the potential of ʟ-car-AgNPs for both heavy metal ion detection and catalytic degradation of P-NP, indicating their suitability for environmental monitoring and remediation applications. Further optimization and research are needed to expand their environmental applications and to understand their interaction mechanisms with various contaminants.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1576-1592"},"PeriodicalIF":2.6,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11635285/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142817101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green synthesis of silver nanoparticles derived from algae and their larvicidal properties to control Aedes aegypti. 绿色合成从藻类中提取的银纳米颗粒及其杀灭埃及伊蚊的特性。
IF 2.6 4区 材料科学
Beilstein Journal of Nanotechnology Pub Date : 2024-12-04 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.123
Matheus Alves Siqueira de Assunção, Douglas Dourado, Daiane Rodrigues Dos Santos, Gabriel Bezerra Faierstein, Mara Elga Medeiros Braga, Severino Alves Junior, Rosângela Maria Rodrigues Barbosa, Herminio José Cipriano de Sousa, Fábio Rocha Formiga
{"title":"Green synthesis of silver nanoparticles derived from algae and their larvicidal properties to control <i>Aedes aegypti</i>.","authors":"Matheus Alves Siqueira de Assunção, Douglas Dourado, Daiane Rodrigues Dos Santos, Gabriel Bezerra Faierstein, Mara Elga Medeiros Braga, Severino Alves Junior, Rosângela Maria Rodrigues Barbosa, Herminio José Cipriano de Sousa, Fábio Rocha Formiga","doi":"10.3762/bjnano.15.123","DOIUrl":"10.3762/bjnano.15.123","url":null,"abstract":"<p><p>Mosquito vectors such as <i>Aedes spp</i>. are responsible for the transmission of arboviruses that have a major impact on public health. Therefore, it is necessary to search for ways to control these insects, avoiding the use of conventional chemical insecticides that are proven to be toxic to nature. In the last years, there has been growing evidence for the potential of silver nanoparticles (AgNPs) to be ecologically benign alternatives to the commercially available chemical insecticides against vector-borne diseases. Natural seaweed extracts contain metabolites such as polyphenols, terpenoids, and alkaloids. These compounds act as reducing agents and stabilizers to synthesize biogenic AgNPs. The green synthesis of AgNPs has advantages over other methods, such as low cost and sustainable biosynthesis. In the perspective of using AgNPs in the development of novel insecticides for vector control, this review deals with the eco-friendly synthesis of AgNPs through seaweed extracts as reducing and stabilizing agents. In addition, assessment of toxicity of these nanomaterials in non-target species is discussed.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1566-1575"},"PeriodicalIF":2.6,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11635282/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142817102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrablack color in velvet ant cuticle. 天鹅绒蚂蚁角质层的超黑颜色。
IF 2.6 4区 材料科学
Beilstein Journal of Nanotechnology Pub Date : 2024-12-02 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.122
Vinicius Marques Lopez, Wencke Krings, Juliana Reis Machado, Stanislav Gorb, Rhainer Guillermo-Ferreira
{"title":"Ultrablack color in velvet ant cuticle.","authors":"Vinicius Marques Lopez, Wencke Krings, Juliana Reis Machado, Stanislav Gorb, Rhainer Guillermo-Ferreira","doi":"10.3762/bjnano.15.122","DOIUrl":"10.3762/bjnano.15.122","url":null,"abstract":"<p><p>We studied the ultrastructure of the ultrablack cuticle in <i>Traumatomutilla bifurca</i>, an enigmatic and visually striking species of velvet ants (Hymenoptera, Mutillidae). Using a combination of scanning electron microscopy (SEM), transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM), and optical spectroscopy, we conducted a comprehensive analysis of the cuticle to elucidate its unique optical properties. SEM imaging provided a detailed surface morphology, while TEM provided insights into the internal structure. CLSM showed that the cuticle exhibits no autofluorescence. Our findings reveal a highly specialized cuticle, characterized by microstructures that effectively minimize reflectance and enhance light absorption. Optical spectrometry confirmed the ultrablack nature of the cuticle, with the measured reflectance approaching minimal levels across a broad spectrum of wavelengths. Therefore, our study contributes to a deeper understanding of ultrablack biological materials and their potential applications in biomimetics.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1554-1565"},"PeriodicalIF":2.6,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11635292/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142817103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The round-robin approach applied to nanoinformatics: consensus prediction of nanomaterials zeta potential. 循环方法应用于纳米信息学:纳米材料zeta电位的共识预测。
IF 2.6 4区 材料科学
Beilstein Journal of Nanotechnology Pub Date : 2024-11-29 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.121
Dimitra-Danai Varsou, Arkaprava Banerjee, Joyita Roy, Kunal Roy, Giannis Savvas, Haralambos Sarimveis, Ewelina Wyrzykowska, Mateusz Balicki, Tomasz Puzyn, Georgia Melagraki, Iseult Lynch, Antreas Afantitis
{"title":"The round-robin approach applied to nanoinformatics: consensus prediction of nanomaterials zeta potential.","authors":"Dimitra-Danai Varsou, Arkaprava Banerjee, Joyita Roy, Kunal Roy, Giannis Savvas, Haralambos Sarimveis, Ewelina Wyrzykowska, Mateusz Balicki, Tomasz Puzyn, Georgia Melagraki, Iseult Lynch, Antreas Afantitis","doi":"10.3762/bjnano.15.121","DOIUrl":"https://doi.org/10.3762/bjnano.15.121","url":null,"abstract":"<p><p>A key step in building regulatory acceptance of alternative or non-animal test methods has long been the use of interlaboratory comparisons or round-robins (RRs), in which a common test material and standard operating procedure is provided to all participants, who measure the specific endpoint and return their data for statistical comparison to demonstrate the reproducibility of the method. While there is currently no standard approach for the comparison of modelling approaches, consensus modelling is emerging as a \"modelling equivalent\" of a RR. We demonstrate here a novel approach to evaluate the performance of different models for the same endpoint (nanomaterials' zeta potential) trained using a common dataset, through generation of a consensus model, leading to increased confidence in the model predictions and underlying models. Using a publicly available dataset, four research groups (NovaMechanics Ltd. (NovaM)-Cyprus, National Technical University of Athens (NTUA)-Greece, QSAR Lab Ltd.-Poland, and DTC Lab-India) built five distinct machine learning (ML) models for the in silico prediction of the zeta potential of metal and metal oxide-nanomaterials (NMs) in aqueous media. The individual models were integrated into a consensus modelling scheme, enhancing their predictive accuracy and reducing their biases. The consensus models outperform the individual models, resulting in more reliable predictions. We propose this approach as a valuable method for increasing the validity of nanoinformatics models and driving regulatory acceptance of in silico new approach methodologies for the use within an \"Integrated Approach to Testing and Assessment\" (IATA) for risk assessment of NMs.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1536-1553"},"PeriodicalIF":2.6,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11610486/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142766038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical nanostructured CuBTC/FeBTC MOF composite sensor for enrofloxacin detection. 电化学纳米结构CuBTC/FeBTC MOF复合传感器检测恩诺沙星。
IF 2.6 4区 材料科学
Beilstein Journal of Nanotechnology Pub Date : 2024-11-28 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.120
Thi Kim Ngan Nguyen, Tien Dat Doan, Huy Hieu Luu, Hoang Anh Nguyen, Thi Thu Ha Vu, Quang Hai Tran, Ha Tran Nguyen, Thanh Binh Dang, Thi Hai Yen Pham, Mai Ha Hoang
{"title":"Electrochemical nanostructured CuBTC/FeBTC MOF composite sensor for enrofloxacin detection.","authors":"Thi Kim Ngan Nguyen, Tien Dat Doan, Huy Hieu Luu, Hoang Anh Nguyen, Thi Thu Ha Vu, Quang Hai Tran, Ha Tran Nguyen, Thanh Binh Dang, Thi Hai Yen Pham, Mai Ha Hoang","doi":"10.3762/bjnano.15.120","DOIUrl":"https://doi.org/10.3762/bjnano.15.120","url":null,"abstract":"<p><p>A novel electrochemical sensor for the detection of enrofloxacin (ENR) in aqueous solutions has been developed using a carbon paste electrode modified with a mixture of metal-organic frameworks (MOFs) of CuBTC and FeBTC. These MOFs were successfully synthesized via a solvothermal method and characterized using various techniques, including X-ray diffraction, Fourier-transform infrared spectroscopy, Brunauer-Emmett-Teller analysis, and X-ray photoelectron spectroscopy. The MOF mixture exhibited a particle size ranging from 40 to 100 nm, a high surface area of 1147 m<sup>2</sup>/g, a pore volume of 0.544 cm<sup>3</sup>/g, and a capillary diameter of 1.50 nm. Additionally, energy-dispersive X-ray mapping demonstrated the uniform distribution of the two MOFs within the electrode composition. The synergistic effect of the electrocatalytic properties of CuBTC and the high conductivity of FeBTC significantly enhanced the electrochemical response of ENR, increasing the signal by more than ten times compared to the unmodified electrode. Under optimal analytical conditions, the sensor exhibited three dynamic ranges for ENR detection, that is, 0.005 to 0.100 µM, 0.1 to 1.0 µM, and 1 to 13 µM, with coefficients of determination of 0.9990, 0.9954, and 0.9992, respectively, depending on the accumulation duration. The sensor achieved a low detection limit of 3 nM and demonstrated good reproducibility, with a relative standard deviation of 3.83%. Furthermore, the sensor demonstrated effective performance in analysing tap and lake water samples, with recovery rates ranging from 90.2% to 121.3%.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1522-1535"},"PeriodicalIF":2.6,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11610485/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142766035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating high-performance computing, machine learning, data management workflows, and infrastructures for multiscale simulations and nanomaterials technologies. 集成高性能计算,机器学习,数据管理工作流程,以及多尺度模拟和纳米材料技术的基础设施。
IF 2.6 4区 材料科学
Beilstein Journal of Nanotechnology Pub Date : 2024-11-27 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.119
Fabio Le Piane, Mario Vozza, Matteo Baldoni, Francesco Mercuri
{"title":"Integrating high-performance computing, machine learning, data management workflows, and infrastructures for multiscale simulations and nanomaterials technologies.","authors":"Fabio Le Piane, Mario Vozza, Matteo Baldoni, Francesco Mercuri","doi":"10.3762/bjnano.15.119","DOIUrl":"https://doi.org/10.3762/bjnano.15.119","url":null,"abstract":"<p><p>This perspective article explores the convergence of advanced digital technologies, including high-performance computing (HPC), artificial intelligence, machine learning, and sophisticated data management workflows. The primary objective is to enhance the accessibility of multiscale simulations and their integration with other computational techniques, thereby advancing the field of nanomaterials technologies. The proposed approach relies on key strategies and digital technologies employed to achieve efficient and innovative materials discovery, emphasizing a fully digital, data-centric methodology. The integration of methodologies rooted in knowledge and structured information management serves as a foundational element, establishing a framework for representing materials-related information and ensuring interoperability across a diverse range of tools. The paper explores the distinctive features of digital and data-centric approaches and technologies for materials development. It highlights the role of digital twins in research, particularly in the realm of nanomaterials development and examines the impact of knowledge engineering in establishing data and information standards to facilitate interoperability. Furthermore, the paper explores the role of deployment technologies in managing HPC infrastructures. It also addresses the pairing of these technologies with user-friendly development tools to support the adoption of digital methodologies in advanced research.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1498-1521"},"PeriodicalIF":2.6,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11610488/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142766037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polymer lipid hybrid nanoparticles for phytochemical delivery: challenges, progress, and future prospects. 用于植物化学物质输送的聚合物脂质混合纳米颗粒:挑战、进展和未来前景。
IF 2.6 4区 材料科学
Beilstein Journal of Nanotechnology Pub Date : 2024-11-22 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.118
Iqra Rahat, Pooja Yadav, Aditi Singhal, Mohammad Fareed, Jaganathan Raja Purushothaman, Mohammed Aslam, Raju Balaji, Sonali Patil-Shinde, Md Rizwanullah
{"title":"Polymer lipid hybrid nanoparticles for phytochemical delivery: challenges, progress, and future prospects.","authors":"Iqra Rahat, Pooja Yadav, Aditi Singhal, Mohammad Fareed, Jaganathan Raja Purushothaman, Mohammed Aslam, Raju Balaji, Sonali Patil-Shinde, Md Rizwanullah","doi":"10.3762/bjnano.15.118","DOIUrl":"10.3762/bjnano.15.118","url":null,"abstract":"<p><p>Phytochemicals, naturally occurring compounds in plants, possess a wide range of therapeutic properties, including antioxidant, anti-inflammatory, anticancer, and antimicrobial activities. However, their clinical application is often hindered by poor water solubility, low bioavailability, rapid metabolism, and instability under physiological conditions. Polymer lipid hybrid nanoparticles (PLHNPs) have emerged as a novel delivery system that combines the advantages of both polymeric and lipid-based nanoparticles to overcome these challenges. This review explores the potential of PLHNPs to enhance the delivery and efficacy of phytochemicals for biomedical applications. We discuss the obstacles in the conventional delivery of phytochemicals, the fundamental architecture of PLHNPs, and the types of PLHNPs, highlighting their ability to improve encapsulation efficiency, stability, and controlled release of the encapsulated phytochemicals. In addition, the surface modification strategies to improve overall therapeutic efficacy by site-specific delivery of encapsulated phytochemicals are also discussed. Furthermore, we extensively discuss the preclinical studies on phytochemical encapsulated PLHNPs for the management of different diseases. Additionally, we explore the challenges ahead and prospects of PLHNPs regarding their widespread use in clinical settings. Overall, PLHNPs hold strong potential for the effective delivery of phytochemicals for biomedical applications. As per the findings from pre-clinical studies, this may offer a promising strategy for managing various diseases.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1473-1497"},"PeriodicalIF":2.6,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11590012/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142725364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信