Beilstein Journal of Nanotechnology最新文献

筛选
英文 中文
Realizing active targeting in cancer nanomedicine with ultrasmall nanoparticles. 利用超小型纳米粒子实现癌症纳米药物的主动靶向。
IF 2.6 4区 材料科学
Beilstein Journal of Nanotechnology Pub Date : 2024-09-30 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.98
André F Lima, Giselle Z Justo, Alioscka A Sousa
{"title":"Realizing active targeting in cancer nanomedicine with ultrasmall nanoparticles.","authors":"André F Lima, Giselle Z Justo, Alioscka A Sousa","doi":"10.3762/bjnano.15.98","DOIUrl":"https://doi.org/10.3762/bjnano.15.98","url":null,"abstract":"<p><p>Ultrasmall nanoparticles (usNPs) have emerged as promising theranostic tools in cancer nanomedicine. With sizes comparable to globular proteins, usNPs exhibit unique physicochemical properties and physiological behavior distinct from larger particles, including lack of protein corona formation, efficient renal clearance, and reduced recognition and sequestration by the reticuloendothelial system. In cancer treatment, usNPs demonstrate favorable tumor penetration and intratumoral diffusion. Active targeting strategies, incorporating ligands for specific tumor receptor binding, serve to further enhance usNP tumor selectivity and therapeutic performance. Numerous preclinical studies have already demonstrated the potential of actively targeted usNPs, revealing increased tumor accumulation and retention compared to non-targeted counterparts. In this review, we explore actively targeted inorganic usNPs, highlighting their biological properties and behavior, along with applications in both preclinical and clinical settings.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1208-1226"},"PeriodicalIF":2.6,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457047/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A low-kiloelectronvolt focused ion beam strategy for processing low-thermal-conductance materials with nanoampere currents. 用纳安培电流加工低热导材料的低千伏聚焦离子束策略。
IF 2.6 4区 材料科学
Beilstein Journal of Nanotechnology Pub Date : 2024-09-27 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.97
Annalena Wolff, Nico Klingner, William Thompson, Yinghong Zhou, Jinying Lin, Yin Xiao
{"title":"A low-kiloelectronvolt focused ion beam strategy for processing low-thermal-conductance materials with nanoampere currents.","authors":"Annalena Wolff, Nico Klingner, William Thompson, Yinghong Zhou, Jinying Lin, Yin Xiao","doi":"10.3762/bjnano.15.97","DOIUrl":"10.3762/bjnano.15.97","url":null,"abstract":"<p><p>Ion beam-induced heat damage in thermally low conductive specimens such as biological samples is gaining increased interest within the scientific community. This is partly due to the increased use of FIB-SEMs in biology as well as the development of complex materials, such as polymers, which need to be analyzed. The work presented here looks at the physics behind the ion beam-sample interactions and the effect of the incident ion energy (set by the acceleration voltage) on inducing increases in sample temperature and potential heat damage in thermally low conductive materials such as polymers and biological samples. The ion beam-induced heat for different ion beam currents at low acceleration voltages is calculated using Fourier's law of heat transfer, finite element simulations, and numerical modelling results and compared to experiments. The results indicate that with lower accelerator voltages, higher ion beam currents in the nanoampere range can be used to pattern or image soft material and non-resin-embedded biological samples with increased milling speed but reduced heat damage.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1197-1207"},"PeriodicalIF":2.6,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443649/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis, characterization and anticancer effect of doxorubicin-loaded dual stimuli-responsive smart nanopolymers. 负载多柔比星的双刺激响应智能纳米聚合物的合成、表征和抗癌效果。
IF 2.6 4区 材料科学
Beilstein Journal of Nanotechnology Pub Date : 2024-09-26 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.96
Ömür Acet, Pavel Kirsanov, Burcu Önal Acet, Inessa Halets-Bui, Dzmitry Shcharbin, Şeyda Ceylan Cömert, Mehmet Odabaşı
{"title":"Synthesis, characterization and anticancer effect of doxorubicin-loaded dual stimuli-responsive smart nanopolymers.","authors":"Ömür Acet, Pavel Kirsanov, Burcu Önal Acet, Inessa Halets-Bui, Dzmitry Shcharbin, Şeyda Ceylan Cömert, Mehmet Odabaşı","doi":"10.3762/bjnano.15.96","DOIUrl":"10.3762/bjnano.15.96","url":null,"abstract":"<p><p>Nanopolymers represent a significant group of delivery vehicles for hydrophobic drugs. In particular, dual stimuli-responsive smart polymer nanomaterials might be extremely useful for drug delivery and release. We analyzed the possibility to include the known antitumor drug doxorubicin (DOX), which has antimitotic and antiproliferative effects, in a nanopolymer complex. Thus, doxorubicin-loaded temperature- and pH-sensitive smart nanopolymers (DOX-SNPs) were produced. Characterizations of the synthesized nanostructures were carried out including zeta potential measurements, Fourier-transform infrared spectroscopy, and scanning electron microscopy. The loading capacity of the nanopolymers for DOX was investigated, and encapsulation and release studies were carried out. In a final step, the cytotoxicity of the DOX-nanopolymer complexes against the HeLa cancer cell line at different concentrations and incubation times was studied. The DOX release depended on temperature and pH value of the release medium, with the highest release at pH 6.0 and 41 °C. This effect was similar to that observed for the commercial liposomal formulation of doxorubicin Doxil. The obtained results demonstrated that smart nanopolymers can be efficiently used to create new types of doxorubicin-based drugs.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1189-1196"},"PeriodicalIF":2.6,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443663/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AI-assisted models to predict chemotherapy drugs modified with C60 fullerene derivatives. 用人工智能辅助模型预测用 C60 富勒烯衍生物修饰的化疗药物。
IF 2.6 4区 材料科学
Beilstein Journal of Nanotechnology Pub Date : 2024-09-19 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.95
Jonathan-Siu-Loong Robles-Hernández, Dora Iliana Medina, Katerin Aguirre-Hurtado, Marlene Bosquez, Roberto Salcedo, Alan Miralrio
{"title":"AI-assisted models to predict chemotherapy drugs modified with C<sub>60</sub> fullerene derivatives.","authors":"Jonathan-Siu-Loong Robles-Hernández, Dora Iliana Medina, Katerin Aguirre-Hurtado, Marlene Bosquez, Roberto Salcedo, Alan Miralrio","doi":"10.3762/bjnano.15.95","DOIUrl":"https://doi.org/10.3762/bjnano.15.95","url":null,"abstract":"<p><p>Employing quantitative structure-activity relationship (QSAR)/ quantitative structure-property relationship (QSPR) models, this study explores the application of fullerene derivatives as nanocarriers for breast cancer chemotherapy drugs. Isolated drugs and two drug-fullerene complexes (i.e., drug-pristine C<sub>60</sub> fullerene and drug-carboxyfullerene C<sub>60</sub>-COOH) were investigated with the protein CXCR7 as the molecular docking target. The research involved over 30 drugs and employed Pearson's hard-soft acid-base theory and common QSAR/QSPR descriptors to build predictive models for the docking scores. Energetic descriptors were computed using quantum chemistry at the density functional-based tight binding DFTB3 level. The results indicate that drug-fullerene complexes interact more with CXCR7 than isolated drugs. Specific binding sites were identified, with varying locations for each drug complex. Predictive models, developed using multiple linear regression and IBM Watson artificial intelligence (AI), achieved mean absolute percentage errors below 12%, driven by AI-identified key variables. The predictive models included mainly quantitative descriptors collected from datasets as well as computed ones. In addition, a water-soluble fullerene was used to compare results obtained by DFTB3 with a conventional density functional theory approach. These findings promise to enhance breast cancer chemotherapy by leveraging fullerene-based drug nanocarriers.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1170-1188"},"PeriodicalIF":2.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420546/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142340410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum-to-classical modeling of monolayer Ge2Se2 and its application in photovoltaic devices. 单层 Ge2Se2 的量子到经典模型及其在光伏设备中的应用。
IF 2.6 4区 材料科学
Beilstein Journal of Nanotechnology Pub Date : 2024-09-11 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.94
Anup Shrivastava, Shivani Saini, Dolly Kumari, Sanjai Singh, Jost Adam
{"title":"Quantum-to-classical modeling of monolayer Ge<sub>2</sub>Se<sub>2</sub> and its application in photovoltaic devices.","authors":"Anup Shrivastava, Shivani Saini, Dolly Kumari, Sanjai Singh, Jost Adam","doi":"10.3762/bjnano.15.94","DOIUrl":"https://doi.org/10.3762/bjnano.15.94","url":null,"abstract":"<p><p>Since the discovery of graphene in 2004, the unique properties of two-dimensional materials have sparked intense research interest regarding their use as alternative materials in various photonic applications. Transition metal dichalcogenide monolayers have been proposed as transport layers in photovoltaic cells, but the promising characteristics of group IV-VI dichalcogenides are yet to be thoroughly investigated. This manuscript reports on monolayer Ge<sub>2</sub>Se<sub>2</sub> (a group IV-VI dichalcogenide), its optoelectronic behavior, and its potential application in photovoltaics. When employed as a hole transport layer, the material fosters an astonishing device performance. We use ab initio modeling for the material prediction, while classical drift-diffusion drives the device simulations. Hybrid functionals calculate electronic and optical properties to maintain high accuracy. The structural stability has been verified using phonon spectra. The <i>E</i>-<i>k</i> dispersion reveals the investigated material's key electronic properties. The calculations reveal a direct bandgap of 1.12 eV for monolayer Ge<sub>2</sub>Se<sub>2</sub>. We further extract critical optical parameters using the Kubo-Greenwood formalism and Kramers-Kronig relations. A significantly large absorption coefficient and a high dielectric constant inspired the design of a monolayer Ge<sub>2</sub>Se<sub>2</sub>-based solar cell, exhibiting a high open circuit voltage of <i>V</i> <sub>oc</sub> = 1.11 V, a fill factor of 87.66%, and more than 28% power conversion efficiency at room temperature. Our findings advocate monolayer Ge<sub>2</sub>Se<sub>2</sub> for various optoelectronic devices, including next-generation solar cells. The hybrid quantum-to-macroscopic methodology presented here applies to broader classes of 2D and 3D materials and structures, showing a path to the computational design of future photovoltaic materials.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1153-1169"},"PeriodicalIF":2.6,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406054/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Introducing third-generation periodic table descriptors for nano-qRASTR modeling of zebrafish toxicity of metal oxide nanoparticles. 引入第三代元素周期表描述符,对金属氧化物纳米颗粒的斑马鱼毒性进行纳米-qRASTR建模。
IF 2.6 4区 材料科学
Beilstein Journal of Nanotechnology Pub Date : 2024-09-10 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.93
Supratik Kar, Siyun Yang
{"title":"Introducing third-generation periodic table descriptors for nano-qRASTR modeling of zebrafish toxicity of metal oxide nanoparticles.","authors":"Supratik Kar, Siyun Yang","doi":"10.3762/bjnano.15.93","DOIUrl":"https://doi.org/10.3762/bjnano.15.93","url":null,"abstract":"<p><p>Metal oxide nanoparticles (MONPs) are widely used in medicine and environmental remediation because of their unique properties. However, their size, surface area, and reactivity can cause toxicity, potentially leading to oxidative stress, inflammation, and cellular or DNA damage. In this study, a nano-quantitative structure-toxicity relationship (nano-QSTR) model was initially developed to assess zebrafish toxicity for 24 MONPs. Previously established 23 first- and second-generation periodic table descriptors, along with five newly proposed third-generation descriptors derived from the periodic table, were employed. Subsequently, to enhance the quality and predictive capability of the nano-QSTR model, a nano-quantitative read across structure-toxicity relationship (nano-qRASTR) model was created. This model integrated read-across descriptors with modeled descriptors from the nano-QSTR approach. The nano-qRASTR model, featuring three attributes, outperformed the previously reported simple QSTR model, despite having one less MONP. This study highlights the effective utilization of the nano-qRASTR algorithm in situations with limited data for modeling, demonstrating superior goodness-of-fit, robustness, and predictability (<i>R</i> <sup>2</sup> = 0.81, <i>Q</i> <sup>2</sup> <sub>LOO</sub> = 0.70, <i>Q</i> <sup>2</sup> <sub>F1</sub>/<i>R</i> <sup>2</sup> <sub>PRED</sub> = 0.76) compared to simple QSTR models. Finally, the developed nano-qRASTR model was applied to predict toxicity data for an external dataset comprising 35 MONPs, addressing gaps in zebrafish toxicity assessment.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1142-1152"},"PeriodicalIF":2.6,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406052/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photocatalytic methane oxidation over a TiO2/SiNWs p-n junction catalyst at room temperature. 室温下 TiO2/SiNWs p-n 结催化剂的光催化甲烷氧化作用。
IF 2.6 4区 材料科学
Beilstein Journal of Nanotechnology Pub Date : 2024-09-02 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.92
Qui Thanh Hoai Ta, Luan Minh Nguyen, Ngoc Hoi Nguyen, Phan Khanh Thinh Nguyen, Dai Hai Nguyen
{"title":"Photocatalytic methane oxidation over a TiO<sub>2</sub>/SiNWs p-n junction catalyst at room temperature.","authors":"Qui Thanh Hoai Ta, Luan Minh Nguyen, Ngoc Hoi Nguyen, Phan Khanh Thinh Nguyen, Dai Hai Nguyen","doi":"10.3762/bjnano.15.92","DOIUrl":"https://doi.org/10.3762/bjnano.15.92","url":null,"abstract":"<p><p>Rapid recombination of charge carriers in semiconductors is a main drawback for photocatalytic oxidative coupling of methane (OCM) reactions. Herein, we propose a novel catalyst by developing a p-n junction titania-silicon nanowires (TiO<sub>2</sub>/SiNWs) heterostructure. The structure is fabricated by atomic layer deposition of TiO<sub>2</sub> on p-type SiNWs. The TiO<sub>2</sub>/SiNWs heterostructure exhibited an outstanding OCM performance under simulated solar light irradiation compared to the single components. This enhanced efficiency was attributed to the intrinsic electrical field formed between n-type TiO<sub>2</sub> and p-type SiNWs, which forces generated charge carriers to move in opposite directions and suppresses charge recombination. Besides, surface morphology and optical properties of the the p-n TiO<sub>2</sub>/SiNWs catalyst are also beneficial for the photocatalytic activity. It is expected that the results of this study will provide massive guidance in synthesizing an efficient photocatalyst for CH<sub>4</sub> conversion under mild conditions.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1132-1141"},"PeriodicalIF":2.6,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11403797/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local work function on graphene nanoribbons. 石墨烯纳米带的局部功函数
IF 2.6 4区 材料科学
Beilstein Journal of Nanotechnology Pub Date : 2024-08-29 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.91
Daniel Rothhardt, Amina Kimouche, Tillmann Klamroth, Regina Hoffmann-Vogel
{"title":"Local work function on graphene nanoribbons.","authors":"Daniel Rothhardt, Amina Kimouche, Tillmann Klamroth, Regina Hoffmann-Vogel","doi":"10.3762/bjnano.15.91","DOIUrl":"10.3762/bjnano.15.91","url":null,"abstract":"<p><p>Graphene nanoribbons show exciting electronic properties related to the exotic nature of the charge carriers and to local confinement as well as atomic-scale structural details. The local work function provides evidence for such structural, electronic, and chemical variations at surfaces. Kelvin prove force microscopy can be used to measure the local contact potential difference (LCPD) between a probe tip and a surface, related to the work function. Here we use this technique to map the LCPD of graphene nanoribbons grown on a Au(111) substrate. The LCPD data shows charge transfer between the graphene nanoribbons and the gold substrate. Our results are corroborated with density functional theory calculations, which verify that the maps reflect the doping of the nanoribbons. Our results help to understand the relation between atomic structure and electronic properties both in high-resolution images and in the distance dependence of the LCPD.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1125-1131"},"PeriodicalIF":2.6,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368052/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct electron beam writing of silver using a β-diketonate precursor: first insights. 使用β-二酮酸酯前驱体的直接电子束写银:初探。
IF 2.6 4区 材料科学
Beilstein Journal of Nanotechnology Pub Date : 2024-08-26 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.90
Katja Höflich, Krzysztof Maćkosz, Chinmai S Jureddy, Aleksei Tsarapkin, Ivo Utke
{"title":"Direct electron beam writing of silver using a β-diketonate precursor: first insights.","authors":"Katja Höflich, Krzysztof Maćkosz, Chinmai S Jureddy, Aleksei Tsarapkin, Ivo Utke","doi":"10.3762/bjnano.15.90","DOIUrl":"10.3762/bjnano.15.90","url":null,"abstract":"<p><p>Direct electron beam writing is a powerful tool for fabricating complex nanostructures in a single step. The electron beam locally cleaves the molecules of an adsorbed gaseous precursor to form a deposit, similar to 3D printing but without the need for a resist or development step. Here, we employ for the first time a silver β-diketonate precursor for focused electron beam-induced deposition (FEBID). The used compound (hfac)AgPMe<sub>3</sub> operates at an evaporation temperature of 70-80 °C and is compatible with commercially available gas injection systems used in any standard scanning electron microscope. Growth of smooth 3D geometries could be demonstrated for tightly focused electron beams, albeit with low silver content in the deposit volume. The electron beam-induced deposition proved sensitive to the irradiation conditions, leading to varying compositions of the deposit and internal inhomogeneities such as the formation of a layered structure consisting of a pure silver layer at the interface to the substrate covered by a deposit layer with low silver content. Imaging after the deposition process revealed morphological changes such as the growth of silver particles on the surface. While these effects complicate the application for 3D printing, the unique deposit structure with a thin, compact silver film beneath the deposit body is interesting from a fundamental point of view and may offer additional opportunities for applications.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1117-1124"},"PeriodicalIF":2.6,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368048/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent updates in applications of nanomedicine for the treatment of hepatic fibrosis. 应用纳米药物治疗肝纤维化的最新进展。
IF 2.6 4区 材料科学
Beilstein Journal of Nanotechnology Pub Date : 2024-08-23 eCollection Date: 2024-01-01 DOI: 10.3762/bjnano.15.89
Damai Ria Setyawati, Fransiska Christydira Sekaringtyas, Riyona Desvy Pratiwi, A'liyatur Rosyidah, Rohimmahtunnissa Azhar, Nunik Gustini, Gita Syahputra, Idah Rosidah, Etik Mardliyati, Tarwadi, Sjaikhurrizal El Muttaqien
{"title":"Recent updates in applications of nanomedicine for the treatment of hepatic fibrosis.","authors":"Damai Ria Setyawati, Fransiska Christydira Sekaringtyas, Riyona Desvy Pratiwi, A'liyatur Rosyidah, Rohimmahtunnissa Azhar, Nunik Gustini, Gita Syahputra, Idah Rosidah, Etik Mardliyati, Tarwadi, Sjaikhurrizal El Muttaqien","doi":"10.3762/bjnano.15.89","DOIUrl":"10.3762/bjnano.15.89","url":null,"abstract":"<p><p>Over recent decades, nanomedicine has played an important role in the enhancement of therapeutic outcomes compared to those of conventional therapy. At the same time, nanoparticle drug delivery systems offer a significant reduction in side effects of treatments by lowering the off-target biodistribution of the active pharmaceutical ingredients. Cancer nanomedicine represents the most extensively studied nanotechnology application in the field of pharmaceutics and pharmacology since the first nanodrug for cancer treatment, liposomal doxorubicin (Doxil<sup>®</sup>), has been approved by the FDA. The advancement of cancer nanomedicine and its enormous technological success also included various other target diseases, including hepatic fibrosis. This confirms the versatility of nanomedicine for improving therapeutic activity. In this review, we summarize recent updates of nanomedicine platforms for improving therapeutic efficacy regarding liver fibrosis. We first emphasize the challenges of conventional drugs for penetrating the biological barriers of the liver. After that, we highlight design principles of nanocarriers for achieving improved drug delivery of antifibrosis drugs through passive and active targeting strategies.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"15 ","pages":"1105-1116"},"PeriodicalIF":2.6,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346304/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142071915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信