Alina V Dvornichenko, Vasyl O Kharchenko, Dmitrii O Kharchenko
{"title":"Impact of adsorbate-substrate interaction on nanostructured thin films growth during low-pressure condensation.","authors":"Alina V Dvornichenko, Vasyl O Kharchenko, Dmitrii O Kharchenko","doi":"10.3762/bjnano.16.36","DOIUrl":null,"url":null,"abstract":"<p><p>We discuss effects of elastic adsorbate-substrate interactions in processes of nanostructuring of thin films during low-pressure condensation in the framework of theoretical approaches and numerical simulations. It will be shown that an increase in the elastic interaction strength induces first-order transitions and pattern formation. We simulate deposition on one- and multicomponent substrates with different strengths of adsorbate-substrate interactions. We will show that an increase in the strength of adsorbate-substrate interactions stimulates the formation of stable surface structures during deposition, which leads to an increase in its coverage and the formation of a smaller number of adsorbate islands of larger size. At elevated adsorption rates, an increase in adsorbate-substrate interactions results in the transformation of the surface morphology and the formation of percolating adsorbate structures. Deposition onto multicomponent substrates leads to the formation of a stationary surface morphology with an elevated number of adsorbate islands of smaller size, compared to one-component substrates. This study provides a deep insight into the peculiarities of nanostructured thin films' growth in low-pressure systems with different adsorbate-substrate bonding.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"16 ","pages":"473-483"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11956068/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beilstein Journal of Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3762/bjnano.16.36","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We discuss effects of elastic adsorbate-substrate interactions in processes of nanostructuring of thin films during low-pressure condensation in the framework of theoretical approaches and numerical simulations. It will be shown that an increase in the elastic interaction strength induces first-order transitions and pattern formation. We simulate deposition on one- and multicomponent substrates with different strengths of adsorbate-substrate interactions. We will show that an increase in the strength of adsorbate-substrate interactions stimulates the formation of stable surface structures during deposition, which leads to an increase in its coverage and the formation of a smaller number of adsorbate islands of larger size. At elevated adsorption rates, an increase in adsorbate-substrate interactions results in the transformation of the surface morphology and the formation of percolating adsorbate structures. Deposition onto multicomponent substrates leads to the formation of a stationary surface morphology with an elevated number of adsorbate islands of smaller size, compared to one-component substrates. This study provides a deep insight into the peculiarities of nanostructured thin films' growth in low-pressure systems with different adsorbate-substrate bonding.
期刊介绍:
The Beilstein Journal of Nanotechnology is an international, peer-reviewed, Open Access journal. It provides a unique platform for rapid publication without any charges (free for author and reader) – Platinum Open Access. The content is freely accessible 365 days a year to any user worldwide. Articles are available online immediately upon publication and are publicly archived in all major repositories. In addition, it provides a platform for publishing thematic issues (theme-based collections of articles) on topical issues in nanoscience and nanotechnology.
The journal is published and completely funded by the Beilstein-Institut, a non-profit foundation located in Frankfurt am Main, Germany. The editor-in-chief is Professor Thomas Schimmel – Karlsruhe Institute of Technology. He is supported by more than 20 associate editors who are responsible for a particular subject area within the scope of the journal.