{"title":"氮注入诱导溅射钼薄膜结构、形态、光学和电学特性的裁剪。","authors":"Usha Rani, Kafi Devi, Divya Gupta, Sanjeev Aggarwal","doi":"10.3762/bjnano.16.38","DOIUrl":null,"url":null,"abstract":"<p><p>Molybdenum (Mo) thin films have extensive applications in energy storage devices and photovoltaic solar cells because of their remarkable thermal stability, high melting point, and chemical inertness. In the present study, Mo thin films of different thicknesses (150, 200, 250, and 300 nm) have been deposited on Si(100) substrates via radio frequency sputtering in an argon atmosphere at room temperature. Some of these films have been implanted with 1 × 10<sup>17</sup> N<sub>2</sub> <sup>+</sup>·cm<sup>-2</sup> at 30 keV using a current density of 4 µA·cm<sup>-2</sup>. Surface morphology and structural, optical, and electrical properties of the as-deposited and implanted Mo thin films have been systematically investigated. The crystallinity of Mo thin films is enhanced with increasing thickness of the as-deposited films. This pattern persists with film thickness even after N<sub>2</sub> <sup>+</sup> implantation. After implantation, crystallinity decreases relative to as-deposited films with the same nominal thickness. The AFM analysis reveals that RMS roughness increases with the thickness of Mo films. Optical studies using spectroscopic ellipsometry reveal a significant increase in absorbance and reflectance in as-deposited and N<sub>2</sub> <sup>+</sup>-implanted films. Electrical investigations show that the conductivity increases with film thickness in both as-deposited and implanted films. The conductivity decreases for the same nominal film thickness after implantation.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"16 ","pages":"495-509"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11973585/pdf/","citationCount":"0","resultStr":"{\"title\":\"N<sub>2</sub> <sup>+</sup>-implantation-induced tailoring of structural, morphological, optical, and electrical characteristics of sputtered molybdenum thin films.\",\"authors\":\"Usha Rani, Kafi Devi, Divya Gupta, Sanjeev Aggarwal\",\"doi\":\"10.3762/bjnano.16.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Molybdenum (Mo) thin films have extensive applications in energy storage devices and photovoltaic solar cells because of their remarkable thermal stability, high melting point, and chemical inertness. In the present study, Mo thin films of different thicknesses (150, 200, 250, and 300 nm) have been deposited on Si(100) substrates via radio frequency sputtering in an argon atmosphere at room temperature. Some of these films have been implanted with 1 × 10<sup>17</sup> N<sub>2</sub> <sup>+</sup>·cm<sup>-2</sup> at 30 keV using a current density of 4 µA·cm<sup>-2</sup>. Surface morphology and structural, optical, and electrical properties of the as-deposited and implanted Mo thin films have been systematically investigated. The crystallinity of Mo thin films is enhanced with increasing thickness of the as-deposited films. This pattern persists with film thickness even after N<sub>2</sub> <sup>+</sup> implantation. After implantation, crystallinity decreases relative to as-deposited films with the same nominal thickness. The AFM analysis reveals that RMS roughness increases with the thickness of Mo films. Optical studies using spectroscopic ellipsometry reveal a significant increase in absorbance and reflectance in as-deposited and N<sub>2</sub> <sup>+</sup>-implanted films. Electrical investigations show that the conductivity increases with film thickness in both as-deposited and implanted films. The conductivity decreases for the same nominal film thickness after implantation.</p>\",\"PeriodicalId\":8802,\"journal\":{\"name\":\"Beilstein Journal of Nanotechnology\",\"volume\":\"16 \",\"pages\":\"495-509\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11973585/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Beilstein Journal of Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3762/bjnano.16.38\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beilstein Journal of Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3762/bjnano.16.38","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
N2+-implantation-induced tailoring of structural, morphological, optical, and electrical characteristics of sputtered molybdenum thin films.
Molybdenum (Mo) thin films have extensive applications in energy storage devices and photovoltaic solar cells because of their remarkable thermal stability, high melting point, and chemical inertness. In the present study, Mo thin films of different thicknesses (150, 200, 250, and 300 nm) have been deposited on Si(100) substrates via radio frequency sputtering in an argon atmosphere at room temperature. Some of these films have been implanted with 1 × 1017 N2+·cm-2 at 30 keV using a current density of 4 µA·cm-2. Surface morphology and structural, optical, and electrical properties of the as-deposited and implanted Mo thin films have been systematically investigated. The crystallinity of Mo thin films is enhanced with increasing thickness of the as-deposited films. This pattern persists with film thickness even after N2+ implantation. After implantation, crystallinity decreases relative to as-deposited films with the same nominal thickness. The AFM analysis reveals that RMS roughness increases with the thickness of Mo films. Optical studies using spectroscopic ellipsometry reveal a significant increase in absorbance and reflectance in as-deposited and N2+-implanted films. Electrical investigations show that the conductivity increases with film thickness in both as-deposited and implanted films. The conductivity decreases for the same nominal film thickness after implantation.
期刊介绍:
The Beilstein Journal of Nanotechnology is an international, peer-reviewed, Open Access journal. It provides a unique platform for rapid publication without any charges (free for author and reader) – Platinum Open Access. The content is freely accessible 365 days a year to any user worldwide. Articles are available online immediately upon publication and are publicly archived in all major repositories. In addition, it provides a platform for publishing thematic issues (theme-based collections of articles) on topical issues in nanoscience and nanotechnology.
The journal is published and completely funded by the Beilstein-Institut, a non-profit foundation located in Frankfurt am Main, Germany. The editor-in-chief is Professor Thomas Schimmel – Karlsruhe Institute of Technology. He is supported by more than 20 associate editors who are responsible for a particular subject area within the scope of the journal.