{"title":"Pushing Boundaries: What’s Next in Metal-Free C–H Functionalization for Sulfenylation?","authors":"Payal Rani, Sandhya Chahal, Rajvir Singh, Jayant Sindhu","doi":"10.1007/s41061-024-00460-1","DOIUrl":"10.1007/s41061-024-00460-1","url":null,"abstract":"<div><p>The synthesis of thioether derivatives has been explored widely due to the potential application of these derivatives in medicinal chemistry, pharmaceutical industry and material chemistry. Within this context, there has been an increasing demand for the environmentally benign construction of C–S bonds via C–H functionalization under metal-free conditions. In the present article, we highlight recent developments in metal-free sulfenylation that have occurred in the past three years. The synthesis of organosulfur compounds via a metal-free approach using a variety of sulfur sources, including thiophenols, disulfides, sulfonyl hydrazides, sulfonyl chlorides, elemental sulfur and sulfinates, is discussed. Non-conventional strategies, which refer to the development of thioether derivatives under visible light and electrochemically mediated conditions, are also discussed. The key advantages of the reviewed methodologies include broad substrate scope and high reaction yields under environmentally benign conditions. This comprehensive review will provide chemists with a synthetic tool that will facilitate further development in this field.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"382 2","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140565306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenhui Zhao, Yuqiao Cheng, Jiaqi Pu, Leigang Su, Nan Wang, Yinhao Cao, Lijun Liu
{"title":"Research Progress in Structure Synthesis, Properties, and Applications of Small-Molecule Silicone Surfactants","authors":"Wenhui Zhao, Yuqiao Cheng, Jiaqi Pu, Leigang Su, Nan Wang, Yinhao Cao, Lijun Liu","doi":"10.1007/s41061-024-00457-w","DOIUrl":"10.1007/s41061-024-00457-w","url":null,"abstract":"<div><p>Silicone surfactants have garnered significant research attention owing to their superior properties, such as wettability, ductility, and permeability. Small-molecular silicone surfactants with simple molecular structures outperform polymeric silicone surfactants in terms of surface activity, emulsification, wetting, foaming, and other areas. Moreover, silicone surfactants with small molecules exhibit a diverse and rich molecular structure. This review discusses various synthetic routes for the synthesis of different classes of surfactants, including single-chain, “umbrella” structure, double chain, bolaform, Gemini, and stimulus-responsive surfactants. The fundamental surface/interface properties of the synthesized surfactants are also highlighted. Additionally, these surfactants have demonstrated enormous potential in agricultural synergism, drug delivery, mineral flotation, enhanced oil recovery, separation, and extraction, and foam fire-fighting.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"382 2","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140565304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reaction Pattern and Mechanistic Aspects of Iodine and Iodine-Based Reagents in Selenylation of Aliphatic, Aromatic, and (Hetero)Cyclic Systems","authors":"Pankaj Kumar, Aman Bhalla","doi":"10.1007/s41061-024-00459-8","DOIUrl":"10.1007/s41061-024-00459-8","url":null,"abstract":"<div><p>Organoselenium compounds have been the subject of extensive research since the discovery of the biologically active compound ebselen. Ebselen has recently been found to show activity against the main protease of the virus responsible for COVID-19. Other organoselenium compounds are also well-known for their diverse biological activities, with such compounds exhibiting interesting physical properties relevant to the fields of electronics, materials, and polymer chemistry. In addition, the incorporation of selenium into various organic molecules has garnered significant attention due to the potential of selenium to enhance the biological activity of these molecules, particularly in conjunction with bioactive heterocycles. Iodine and iodine-based reagents play a prominent role in the synthesis of organoselenium compounds, being valued for their cost-effectiveness, non-toxicity, and ease of handling. These reagents efficiently selenylate a broad range of organic substrates, encompassing alkenes, alkynes, and cyclic, aromatic, and heterocyclic molecules. They serve as catalysts, additives, inducers, and oxidizing agents, facilitating the introduction of different functional groups at alternate positions in the molecules, thereby allowing for regioselective and stereoselective approaches. Specific iodine reagents and their combinations can be tailored to follow the desired reaction pathways. Here, we present a comprehensive review of the progress in the selenylation of organic molecules using iodine reagents over the past decade, with a focus on reaction patterns, solvent effects, heating, microwave, and ultrasonic conditions. Detailed discussions on mechanistic aspects, such as electrophilic, nucleophilic, radical, electrochemical, and ring expansion reactions via selenylation, multiselenylation, and difunctionalization, are included. The review also highlights the formation of various cyclic, heterocyclic, and heteroarenes resulting from the in situ generation of selenium intermediates, encompassing cyclic ketones, cyclic ethers, cyclic lactones, selenophenes, chromones, pyrazolines, pyrrolidines, piperidines, indolines, oxazolines, isooxazolines, lactones, dihydrofurans, and isoxazolidines. To enhance the reader’s interest, the review is structured into different sections covering the selenylation of aliphatic sp<sup>2</sup>/sp carbon and cyclic sp<sup>2</sup> carbon, and then is further subdivided into various heterocyclic molecules.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"382 2","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140565302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent Advances in the Application of P(III)-Nucleophiles to Create New P−C Bonds through Michaelis–Arbuzov-Type Rearrangement","authors":"Biquan Xiong, Minjing Yuan, Chonghao Shi, Longzhi Zhu, Fan Cao, Weifeng Xu, Yining Ren, Yu Liu, Ke-Wen Tang","doi":"10.1007/s41061-024-00456-x","DOIUrl":"10.1007/s41061-024-00456-x","url":null,"abstract":"<div><p>Organophosphorus compounds have long been considered valuable in both organic synthesis and life science. P(III)-nucleophiles, such as phosphites, phosphonites, and diaryl/alkyl phosphines, are particularly noteworthy as phosphorylation reagents for their ability to form new P−C bonds, producing more stable, ecofriendly, and cost-effective organophosphorus compounds. These nucleophiles follow similar phosphorylation routes as in the functionalization of P−H bonds and P−OH bonds. Activation can occur through photocatalytic, electrocatalytic, or thermo-driven reactions, often in coordination with a Michaelis–Arbuzov-trpe rearrangement process, to produce the desired products. As such, this review offers a thorough overview of the phosphorylated transformation and potential mechanisms of P(III)-nucleophiles, specifically focusing on developments since 2010. Notably, this review may provide researchers with valuable insights into designing and synthesizing functionalized organophosphorus compounds from P(III)-nucleophiles, guiding future advancements in both research and practical applications.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"382 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140058398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chemical Aspects of Halide Perovskite Nanocrystals","authors":"Mrinmoy Roy, Milan Sykora, M. Aslam","doi":"10.1007/s41061-024-00453-0","DOIUrl":"10.1007/s41061-024-00453-0","url":null,"abstract":"<div><p>Halide perovskite nanocrystals (HPNCs) are currently among the most intensely investigated group of materials. Structurally related to the bulk halide perovskites (HPs), HPNCs are nanostructures with distinct chemical, optical, and electronic properties and significant practical potential. One of the keys to the effective exploitation of the HPNCs in advanced technologies is the development of controllable, reproducible, and scalable methods for preparation of materials with desired compositions, phases, and shapes and low defect content. Another important condition is a quantitative understanding of factors affecting the chemical stability and the optical and electronic properties of HPNCs. Here we review important recent developments in these areas. Following a brief historical prospective, we provide an overview of known chemical methods for preparation of HPNCs and approaches used to control their composition, phase, size, and shape. We then review studies of the relationship between the chemical composition and optical properties of HPNCs, degradation mechanisms, and effects of charge injection. Finally, we provide a short summary and an outlook. The aim of this review is not to provide a comprehensive summary of all relevant literature but rather a selection of highlights, which, in the subjective view of the authors, provide the most significant recent observations and relevant analyses.</p></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"382 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140011939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unlocking Diversity: From Simple to Cutting-Edge Synthetic Methodologies of Bis(indolyl)methanes","authors":"Pankaj Teli, Shivani Soni, Sunita Teli, Shikha Agarwal","doi":"10.1007/s41061-024-00454-z","DOIUrl":"10.1007/s41061-024-00454-z","url":null,"abstract":"<div><p>From a synthetic perspective, bis(indolyl)methanes have undergone extensive investigation over the past two to three decades owing to their remarkable pharmacological activities, encompassing anticancer, antimicrobial, antioxidant, and antiinflammatory properties. These highly desirable attributes have spurred significant interest within the scientific community, leading to the development of various synthetic strategies that are not only more efficient but also ecofriendly. This synthesis-based literature review delves into the advancements made in the past 5 years, focusing on the synthesis of symmetrical as well as unsymmetrical bis(indolyl)methanes. The review encompasses a wide array of methods, ranging from well-established techniques to more unconventional and innovative approaches. Furthermore, it highlights the exploration of various substrates, encompassing readily available chemicals such as indole, aldehydes/ketones, indolyl methanols, etc. as well as the use of some specific compounds as starting materials to achieve the synthesis of this invaluable molecule. By encapsulating the latest developments in this field, this review provides insights into the expanding horizons of bis(indolyl)methane synthesis.</p></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"382 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139974595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sainath Aher, Jinhua Zhu, Pundlik Bhagat, Laxmikant Borse, Xiuhua Liu
{"title":"Pt(IV) Complexes in the Search for Novel Platinum Prodrugs with Promising Activity","authors":"Sainath Aher, Jinhua Zhu, Pundlik Bhagat, Laxmikant Borse, Xiuhua Liu","doi":"10.1007/s41061-023-00448-3","DOIUrl":"10.1007/s41061-023-00448-3","url":null,"abstract":"<div><p>The kinetically inert, six coordinated, octahedral Pt(IV) complexes are termed dual-, triple-, or multi-action prodrugs based on the nature of the axially substituted ligands. These ligands are either inert or biologically active, where the nature of these axial ligands provides additional stability, synergistic biological activity or cell-targeting ability. There are many literature reports from each of these classes, mentioning the varied nature of these axial ligands. The ligands comprise drug molecules such as chlorambucil, doxorubicin, valproic acid, ethacrynic acid, biologically active chalcone, coumarin, combretastatin, non-steroidal anti-inflammatory drugs (NSAIDs) and many more, potentiating the anti-proliferative profile or reducing the side effects associated with cisplatin therapy. The targeting and non-targeting nature of these moieties exert additive or synergistic effects on the anti-cancer activity of Pt(II) moieties. Herein, we discuss the effects of these axially oriented ligands and the changes in the non-leaving am(m)ine groups and in the leaving groups on the biological activity. In this review, we have presented the latest developments in the field of Pt(IV) complexes that display promising activity with a reduced resistance profile. We have discussed the structure activity relationship (SAR) and the effects of the ligands on the biological activity of Pt(IV) complexes with cisplatin, oxaliplatin, carboplatin and the Pt core other than approved drugs. This literature work will help researchers to get an idea about Pt(IV) complexes that have been classified based on the aspects of their biological activity.</p></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"382 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139943763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bioorthogonal Reactions in Bioimaging","authors":"Eszter Kozma, Péter Kele","doi":"10.1007/s41061-024-00452-1","DOIUrl":"10.1007/s41061-024-00452-1","url":null,"abstract":"<div><p>Visualization of biomolecules in their native environment or imaging-aided understanding of more complex biomolecular processes are one of the focus areas of chemical biology research, which requires selective, often site-specific labeling of targets. This challenging task is effectively addressed by bioorthogonal chemistry tools in combination with advanced synthetic biology methods. Today, the smart combination of the elements of the bioorthogonal toolbox allows selective installation of multiple markers to selected targets, enabling multicolor or multimodal imaging of biomolecules. Furthermore, recent developments in bioorthogonally applicable probe design that meet the growing demands of superresolution microscopy enable more complex questions to be addressed. These novel, advanced probes enable highly sensitive, low-background, single- or multiphoton imaging of biological species and events in live organisms at resolutions comparable to the size of the biomolecule of interest. Herein, the latest developments in bioorthogonal fluorescent probe design and labeling schemes will be discussed in the context of in cellulo/in vivo (multicolor and/or superresolved) imaging schemes. The second part focuses on the importance of genetically engineered minimal bioorthogonal tags, with a particular interest in site-specific protein tagging applications to answer biological questions.</p></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"382 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10894152/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139943762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent Progress in Phenoxazine-Based Thermally Activated Delayed Fluorescent Compounds and Their Full-Color Organic Light-Emitting Diodes","authors":"Houda Al-Sharji, Rashid Ilmi, Muhammad S. Khan","doi":"10.1007/s41061-024-00450-3","DOIUrl":"10.1007/s41061-024-00450-3","url":null,"abstract":"<div><p>Third-generation organic light-emitting diodes (OLEDs) based on metal-free thermally activated delayed fluorescent (TADF) materials have sparked tremendous interest in the last decade due to their nearly 100% exciton utilization efficiency, which can address the low-efficiency issue of the first-generation fluorescent emitters and the high-cost issue of the second-generation organometallic phosphorescent emitters. Construction of efficient and stable TADF-OLEDs requires utilizing TADF materials with a narrow singlet–triplet energy gap (Δ<i>E</i><sub>ST</sub>), high photoluminescence quantum yield (PLQY) and short TADF lifetime. A small Δ<i>E</i><sub>ST</sub> is necessary for an efficient reverse intersystem crossing (RISC) process, which can be achieved through the effective spatial separation of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). TADF emitters have been generally designed as intramolecular charge transfer (ICT) molecules with highly twisted donor–acceptor (D–A) molecular architectures. A wide variety of combinations of electron donors and acceptors have been explored. In this review, we shall focus on recent progress in organic TADF molecules incorporating strong electron-donor phenoxazine moiety and their application as emitting layer (EML) in OLEDs.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"382 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139704043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vipin K. Maikhuri, Divya Mathur, Ankita Chaudhary, Rajesh Kumar, Virinder S. Parmar, Brajendra K. Singh
{"title":"Transition-Metal Catalyzed Synthesis of Pyrimidines: Recent Advances, Mechanism, Scope and Future Perspectives","authors":"Vipin K. Maikhuri, Divya Mathur, Ankita Chaudhary, Rajesh Kumar, Virinder S. Parmar, Brajendra K. Singh","doi":"10.1007/s41061-024-00451-2","DOIUrl":"10.1007/s41061-024-00451-2","url":null,"abstract":"<div><p>Pyrimidine is a pharmacologically important moiety that exhibits diverse biological activities. This review reflects the growing significance of transition metal-catalyzed reactions for the synthesis of pyrimidines (with no discussion being made on the transition metal-catalyzed functionalization of pyrimidines). The effect of different catalysts on the selectivity/yields of pyrimidines and catalyst recyclability (wherever applicable) are described, together with attempts to illustrate the role of the catalyst through mechanisms. Although several methods have been researched for synthesizing this privileged scaffold, there has been a considerable push to expand transition metal-catalyzed, sustainable, efficient and selective synthetic strategies leading to pyrimidines. The aim of the authors with this update (2017–2023) is to drive the designing of new transition metal-mediated protocols for pyrimidine synthesis.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"382 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139648897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}