通过 C (sp2)-X 键官能化将二氧化碳固定为有用的芳香族羧酸

IF 8.6 2区 化学 Q1 Chemistry
Youwen Chen, Meihua Chen, Xinyu Li, Xinhua Xu, Shuang-Feng Yin, Renhua Qiu
{"title":"通过 C (sp2)-X 键官能化将二氧化碳固定为有用的芳香族羧酸","authors":"Youwen Chen,&nbsp;Meihua Chen,&nbsp;Xinyu Li,&nbsp;Xinhua Xu,&nbsp;Shuang-Feng Yin,&nbsp;Renhua Qiu","doi":"10.1007/s41061-025-00496-x","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon dioxide (CO<sub>2</sub>) is an abundant and readily available carbon source. Its transformation into high-added-value chemicals is a beneficial strategy, which mitigates greenhouse gas emissions and provides new raw material sources for the chemical industry. Among these chemicals, the aromatic carboxylic acids and derivatives have broad applications in medicine, pesticides, and materials science. Therefore, the carboxylation of C(sp<sup>2</sup>)-X (X = metal, halide, H, O, or S) bonds with CO<sub>2</sub> to efficiently construct aromatic carboxylic acids and their derivatives is a synthetic strategy of significance. This review highlights the recent progress in constructing carboxylic acids and derivatives through the carboxylation of C(sp<sup>2</sup>)-X bonds with CO<sub>2</sub> including literature published from 2000 to December 2024.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"383 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CO2 Fixation into Useful Aromatic Carboxylic Acids via C (sp2)–X Bonds Functionalization\",\"authors\":\"Youwen Chen,&nbsp;Meihua Chen,&nbsp;Xinyu Li,&nbsp;Xinhua Xu,&nbsp;Shuang-Feng Yin,&nbsp;Renhua Qiu\",\"doi\":\"10.1007/s41061-025-00496-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Carbon dioxide (CO<sub>2</sub>) is an abundant and readily available carbon source. Its transformation into high-added-value chemicals is a beneficial strategy, which mitigates greenhouse gas emissions and provides new raw material sources for the chemical industry. Among these chemicals, the aromatic carboxylic acids and derivatives have broad applications in medicine, pesticides, and materials science. Therefore, the carboxylation of C(sp<sup>2</sup>)-X (X = metal, halide, H, O, or S) bonds with CO<sub>2</sub> to efficiently construct aromatic carboxylic acids and their derivatives is a synthetic strategy of significance. This review highlights the recent progress in constructing carboxylic acids and derivatives through the carboxylation of C(sp<sup>2</sup>)-X bonds with CO<sub>2</sub> including literature published from 2000 to December 2024.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":802,\"journal\":{\"name\":\"Topics in Current Chemistry\",\"volume\":\"383 1\",\"pages\":\"\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topics in Current Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41061-025-00496-x\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Current Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41061-025-00496-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
CO2 Fixation into Useful Aromatic Carboxylic Acids via C (sp2)–X Bonds Functionalization

Carbon dioxide (CO2) is an abundant and readily available carbon source. Its transformation into high-added-value chemicals is a beneficial strategy, which mitigates greenhouse gas emissions and provides new raw material sources for the chemical industry. Among these chemicals, the aromatic carboxylic acids and derivatives have broad applications in medicine, pesticides, and materials science. Therefore, the carboxylation of C(sp2)-X (X = metal, halide, H, O, or S) bonds with CO2 to efficiently construct aromatic carboxylic acids and their derivatives is a synthetic strategy of significance. This review highlights the recent progress in constructing carboxylic acids and derivatives through the carboxylation of C(sp2)-X bonds with CO2 including literature published from 2000 to December 2024.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topics in Current Chemistry
Topics in Current Chemistry 化学-化学综合
CiteScore
11.70
自引率
1.20%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Topics in Current Chemistry provides in-depth analyses and forward-thinking perspectives on the latest advancements in chemical research. This renowned journal encompasses various domains within chemical science and their intersections with biology, medicine, physics, and materials science. Each collection within the journal aims to offer a comprehensive understanding, accessible to both academic and industrial readers, of emerging research in an area that captivates a broader scientific community. In essence, Topics in Current Chemistry illuminates cutting-edge chemical research, fosters interdisciplinary collaboration, and facilitates knowledge-sharing among diverse scientific audiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信