Ramsha Munir, Ameer Fawad Zahoor, Muhammad Naveed Anjum, Usman Nazeer, Atta Ul Haq, Asim Mansha, Aijaz Rasool Chaudhry, Ahmad Irfan
{"title":"Synthesis And Photovoltaic Performance of Carbazole (Donor) Based Photosensitizers in Dye-Sensitized Solar Cells (DSSC): A Review","authors":"Ramsha Munir, Ameer Fawad Zahoor, Muhammad Naveed Anjum, Usman Nazeer, Atta Ul Haq, Asim Mansha, Aijaz Rasool Chaudhry, Ahmad Irfan","doi":"10.1007/s41061-024-00488-3","DOIUrl":"10.1007/s41061-024-00488-3","url":null,"abstract":"<div><p>Carbazoles are nitrogen-containing aromatic heterocycles, having widespread applications in the field of photovoltaics. Carbazole-based photosensitizers have tunable features for absorption on semi-conductor (tellurium dioxide or zinc oxide) layers to create sufficient push–pull force in the conversion of sunlight into electrical energy, thus presenting as promising heterocyclic donor candidates to be used in dye-sensitized solar cells. For the synthesis of these dyes, various structural designs are available, namely, D-A, D-π-A, D-D-π-A, D-A-π-A, A-π-D-π-A-π-A, and D2-π-A that all involve incorporating carbazole as a donor (D), along with spacer (π-extender) moieties, such as thiophene, phenol, ethynylene, nitromethane, azine, thiadiazole, or acetonitrile. Additionally, acceptors (A) employed in the designs include cyanoacrylic acids, carboxylic acids, malononitrile, rhodanine-3-acetic acid, 4-aminobenzoic acid, or 4-amino salicylic acid. This comprehensive review explores the synthesis and photovoltaic performances of numerous carbazole-based photosensitizers tailored for dye-sensitized solar cells, covering the period of 2019–2023.</p></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"383 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142906076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anjana Sreekumar, Ajil R. Nair, C. Raksha, Sujith Sudheendran Swayamprabha, Akhil Sivan
{"title":"An Intervention into the Diverse Utilities of Fluorenes: A Brobdingnagian Family","authors":"Anjana Sreekumar, Ajil R. Nair, C. Raksha, Sujith Sudheendran Swayamprabha, Akhil Sivan","doi":"10.1007/s41061-024-00485-6","DOIUrl":"10.1007/s41061-024-00485-6","url":null,"abstract":"<div><p>The keyword “Fluorene” search in SciFinder found more than 57,000 results, including high-impact journal articles, review articles, patents, books, proceedings, etc. Against this background, a detailed enquiry has been made by our group on various classes of fluorenes and their relevancy. For the past several decades, fluorene and its related compounds have experienced extensive studies, which are attributed to the vast range of applications they possess in various fields like sensors, polymers, OLED devices and even in the pharmaceutical industries. Since fluorene is an important member of the ‘polyaromatic-hydrocarbon’ family and has proved its relevancy in multidisciplinary areas, summarising those milestones might be worthwhile for future researchers. Here, we intend to highlight the key applications of fluorene derivatives in the form of a review article and have put much effort into consolidating some of their most imperative applications, including those in sensors and medicinal, optoelectronic and electrochemical fields. The manuscript divides the fluorene family into multiple subclasses, counting mono- and polyfluorenes, spirofluorenes, silicon-cored fluorenes, indenofluorenes, etc., based on their structure, and portrays all the critical properties of each class. Since fluorenes are globally accepted as outstanding candidates for numerous applications and practicalities, our effort may find crucial acceptance in the near future.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"383 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Virender Virender, Vandana Pandey, Gurjaspreet Singh, Pawan Kumar Sharma, Pankaj Bhatia, Alexander A. Solovev, Brij Mohan
{"title":"Hybrid Metal-Organic Frameworks (MOFs) for Various Catalysis Applications","authors":"Virender Virender, Vandana Pandey, Gurjaspreet Singh, Pawan Kumar Sharma, Pankaj Bhatia, Alexander A. Solovev, Brij Mohan","doi":"10.1007/s41061-024-00486-5","DOIUrl":"10.1007/s41061-024-00486-5","url":null,"abstract":"<div><p>Porous materials have been gaining popularity in catalysis applications, solving the current ecological challenges. Metal-organic frameworks (MOFs) are especially noteworthy for their high surface areas and customizable chemistry, giving them a wide range of potential applications in catalysis remediation. The review study delves into the various applications of MOFs in catalysis and provides a comprehensive summary. This review thoroughly explores MOF materials, specifically focusing on their diverse catalytic applications, including Lewis catalysis, oxidation, reduction, photocatalysis, and electrocatalysis. Also, this study emphasizes the significance of high-performance MOF materials, which possess adjustable properties and exceptional features, as a novel approach to tackling technological challenges across multiple sectors. MOFs make it an ideal candidate for catalytic reactions, as it enables efficient conversion rates and selectivity. Furthermore, the tunable properties of MOF make it possible to tailor its structure to suit specific catalytic requirements. This feature improves performance and reduces costs associated with traditional catalysts. In conclusion, MOF materials have revolutionized the field of catalysis and offer immense potential in solving various technological challenges across different industries.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"383 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuqi Ma, Rui Xu, Xiang Wu, Yilong Wu, Lei Zhao, Guizhi Wang, Fajun Li, Zhisheng Shi
{"title":"Progress in Catalysts for Formic Acid Production by Electrochemical Reduction of Carbon Dioxide","authors":"Yuqi Ma, Rui Xu, Xiang Wu, Yilong Wu, Lei Zhao, Guizhi Wang, Fajun Li, Zhisheng Shi","doi":"10.1007/s41061-024-00487-4","DOIUrl":"10.1007/s41061-024-00487-4","url":null,"abstract":"<div><p>Utilising renewable energy to drive the conversion of carbon dioxide into more valuable products can effectively alleviate the energy crisis and protect the environment while actively responding to the policy of “carbon peaking and carbon neutrality”. Additionally, formic acid/formate is one of the most promising and commercially valuable products of the electrocatalytic CO<sub>2</sub> reduction reaction (ECO<sub>2</sub>RR) as well as a nonhazardous material for hydrogen storage. With the continuous progress in the field of electrocatalytic CO<sub>2</sub> reduction to formic acid/formate (ECO<sub>2</sub>RF), various electrocatalysts with excellent performance have been developed. In this paper, first, the reaction mechanism of ECO<sub>2</sub>RF is briefly summarised, and then the recent research progress for various catalysts for ECO<sub>2</sub>RF, including metal-based catalysts, carbon-based material catalysts, metal–organic framework catalysts, covalent organic framework catalysts, and molecular catalysts, is reviewed. Finally, the current challenges and future perspectives of ECO<sub>2</sub>RF are discussed and presented.</p></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"383 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Organelle-Specific Smart Supramolecular Materials for Bioimaging and Theranostics Application","authors":"Dineshkumar Bharathidasan, Chandan Maity","doi":"10.1007/s41061-024-00483-8","DOIUrl":"10.1007/s41061-024-00483-8","url":null,"abstract":"<div><p>In cellular environments, certain synthetic molecules can form nanostructures via self-assembly, impacting molecular imaging, and biomedical applications. Control over the formation of these self-assembled nanostructures in subcellular organelle is challenging. By the action of stimuli, either present in the cellular environment or applied externally, in situ generation of molecular precursors can lead to accumulation and supramolecular nanostructure formation, resulting in efficient bioimaging. Here, we summarize smart fluorophore-based ordered nanostructure preparation at specific organelles for efficient bioimaging and therapeutic application towards cancer theranostics. We also present challenges and an outlook regarding intercellular self-assembly for theranostics application. Altogether, smart nanostructured materials with fluorescence read-outs at specific subcellular compartments would be beneficial in synthetic biology and precision therapeutics.</p></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"383 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142736886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent Advances in C–O Bond Cleavage of Aryl, Vinyl, and Benzylic Ethers","authors":"Pengfei Li, Mingyu Zhang, Lei Zhang","doi":"10.1007/s41061-024-00484-7","DOIUrl":"10.1007/s41061-024-00484-7","url":null,"abstract":"<div><p>Transition metal-catalyzed cross-coupling with aryl halides has revolutionized the way of diversifying aromatic compounds. Aryl ethers are attractive alternatives to aromatic halides as coupling partners considering the accessibility and potential environmental benefits. The last two decades have witnessed a striking success in the field of C–O bond activation of aryl ethers, including the construction of C–C bond and C–X bond, as well as reductive deoxygenation. Here, we present a comprehensive review of C–O bond activation in the context of aryl, vinyl, and benzylic ethers. This review elaborates on the current state-of-the-art methods, categorized by different catalytic systems, including transition metal catalysis, photoredox catalysis, and other innovative approaches. The newly developed methods allow C–O bond activation under mild conditions with exceptional functional group tolerance, potentially enabling the late-stage functionalization of pharmaceuticals. The limitations and future perspectives of the methods are also presented.</p></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"382 4","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Porous Polymer Sorbents in Micro Solid Phase Extraction: Applications, Advantages, and Challenges","authors":"Sayyed Hossein Hashemi, Massoud Kaykhaii","doi":"10.1007/s41061-024-00481-w","DOIUrl":"10.1007/s41061-024-00481-w","url":null,"abstract":"<div><p>In recent years, porous polymers have gained significant attention for their application as powerful and selective sorbents in micro solid phase extraction (µSPE). In this review we explore the preparation and utilization of various porous polymer sorbents, highlighting their impact on enhancing µSPE techniques. Molecularly imprinted polymers (MIPs), graphene oxide-modified frameworks, and zeolitic imidazole frameworks (ZIFs) are among the innovative materials discussed. These innovative materials have significantly improved µSPE methods, offering enhanced extraction efficiencies, superior selectivity, and reduced solvent consumption, all of which align with the principles of green chemistry. Key findings of this review include the demonstration that MIPs exhibit excellent target specificity, making them ideal for complex matrices, while graphene oxide frameworks and ZIFs provide increased surface area and stability for diverse analytical applications. Despite these advancements, challenges remain, particularly the high cost of certain innovative materials, limited reusability, and the absence of automation in µSPE workflows. Furthermore, controlling the precise synthesis and functionalization of these sorbents continues to be a limiting factor. To address these issues, future research should focus on developing cost-effectiveness methods, the use of biopolymer or sustainable feedstocks, and scalable synthesis methods; integrating automation into µSPE; and exploring new polymeric materials with enhanced properties. Additionally, novel hybrid materials that combine the strengths of multiple sorbents offer a promising direction for future exploration. We critically analyze the advantages and limitations of each sorbent type, providing a comprehensive overview of their applications in µSPE. This paper also examines the synthesis, characterization, and unique properties of these porous polymers, emphasizing their role in advancing analytical chemistry towards more efficient and environmentally friendly practices. The need for continued development of high-performance, low-cost, and sustainable sorbents is underscored to further enhance the effectiveness of µSPE techniques.</p></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"382 4","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Comprehensive Exploration of the Synergistic Relationship between DMSO and Peroxide in Organic Synthesis","authors":"Sumit Kumar, Ashutosh Dey, Barnali Maiti, Soumyadip Das, Sai Deepak Pasuparthy, Kishor Padala","doi":"10.1007/s41061-024-00482-9","DOIUrl":"10.1007/s41061-024-00482-9","url":null,"abstract":"<div><p>In the realm of organic synthesis, reagents can serve not only as solvents but also as synthons. Dimethyl sulfoxide (DMSO) is recognized for its efficiency in this dual capacity, enabling diverse chemical transformations. DMSO can generate various synthons, including methyl, methylene, methine, oxygen, and methyl sulfoxide, broadening the accessible compound repertoire. Activation of DMSO as a reagent relies heavily on synergies with secondary agents like peroxide, persulfate, or iodine. Recent years have witnessed a surge in innovative synthetic techniques harnessing the synergistic interplay of DMSO and peroxide, leading to environmentally friendly and cost-effective reactions with mild conditions. This review highlights the synergistic effects of DMSO and peroxides (up to 2023), detailing their activation mechanisms and the generation of various synthons, along with numerous reported derivatives. Although this topic has received considerable attention in recent years, there are numerous discrepancies and a plethora of possibilities yet to be explored. We anticipate that this review will significantly support researchers in advancing their innovations to a greater extent in the future.</p><h3>Graphical Abstract</h3><p>This review accentuates the synergistic effects of DMSO and peroxides like potassium persulfate (K<sub>2</sub>S<sub>2</sub>O<sub>8</sub>), sodium persulfate (Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub>), ammonium persulfate ((NH<sub>4</sub>)<sub>2</sub>S<sub>2</sub>O<sub>8</sub>), hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), and tertbutyl hydroperoxide (TBHP), as well as Oxone. It highlights their collaborative role in generating diverse synthons and elucidates the mechanisms of activation.</p>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"382 4","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Schiff Base-Based Molybdenum Complexes as Green Catalyst in the Epoxidation Reaction: A Minireview","authors":"Soumen Mistri, Keshab Mondal","doi":"10.1007/s41061-024-00480-x","DOIUrl":"10.1007/s41061-024-00480-x","url":null,"abstract":"<div><p>Epoxides are class of cyclic ether and have been extensively used in petrochemicals and pharmaceuticals industries as raw materials. Due to this reasons, development of the synthetic strategy of epoxides are getting enormous interest among the research chemists. In terms of “development of the synthetic strategy”, the use of a catalyst, especially, Schiff base-based complex is of potential interest due to alternative easy routes and significant advances in metal-mediated pathways giving rise to diverse degree of substrate–reagent interactions. In addition, the synthetic strategy that follows the 12 principles of green chemistry, particularly (i) reduce the use of organic solvent, especially toxic solvents, and (ii) increasing the use of catalysts to obtain selective and quick processes in terms of atom economy, are of great attention now a days. The present review encompasses the Schiff base-based molybdenum complexes as green catalyst in the epoxidation reaction. Molybdenum complexes have grown interest owing to lower cost, environmental protection and commercialization as well as its abundance in different metalloenzymes. On the other hand, molybdenum complexes speed up the O–O bond break of <i>tert</i>-butylhydroperoxide (TBHP); as a result, it accelerates the oxygen transfer process from TBHP to the olefin. This review mainly focused on the catalytic activity of molybdenum-based Schiff base complexes for the epoxidation reaction in water/solvent free condition.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"382 4","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142512869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sumit Kumar, Aditi Arora, Riya Chaudhary, Rajesh Kumar, Christophe Len, Monalisa Mukherjee, Brajendra K. Singh, Virinder S. Parmar
{"title":"Recent Advances in the Synthesis of Acyclic Nucleosides and Their Therapeutic Applications","authors":"Sumit Kumar, Aditi Arora, Riya Chaudhary, Rajesh Kumar, Christophe Len, Monalisa Mukherjee, Brajendra K. Singh, Virinder S. Parmar","doi":"10.1007/s41061-024-00476-7","DOIUrl":"10.1007/s41061-024-00476-7","url":null,"abstract":"<div><p>DNA is commonly known as the “molecule of life” because it holds the genetic instructions for all living organisms on Earth. The utilization of modified nucleosides holds the potential to transform the management of a wide range of human illnesses. Modified nucleosides and their role directly led to the 2023 Nobel prize. Acyclic nucleosides, due to their distinctive physiochemical and biological characteristics, rank among the most adaptable modified nucleosides in the field of medicinal chemistry. Acyclic nucleosides are more resistant to chemical and biological deterioration, and their adaptable acyclic structure makes it possible for them to interact with various enzymes. A phosphonate group, which is linked via an aliphatic functionality to a purine or a pyrimidine base, distinguishes acyclic nucleoside phosphonates (ANPs) from other nucleotide analogs. Acyclic nucleosides and their derivatives have demonstrated various biological activities such as anti-viral, anti-bacterial, anti-cancer, anti-microbial, etc. Ganciclovir, Famciclovir, and Penciclovir are the acyclic nucleoside-based drugs approved by FDA for the treatment of various diseases. Thus, acyclic nucleosides are extremely useful for generating a variety of unique bioactive chemicals. Their biological activities as well as selectivity is significantly influenced by the stereochemistry of the acyclic nucleosides because chiral acyclic nucleosides have drawn a lot of interest due to their intriguing biological functions and potential as medicines. For example, tenofovir's (<i>R</i>) enantiomer is roughly 50 times more potent against HIV than its (<i>S</i>) counterpart. We can confidently state, “The most promising developments are yet to come in the realm of acyclic nucleosides!” Herein, we have covered the most current developments in the field of chemical synthesis and therapeutic applications of acyclic nucleosides based upon our continued interest and activity in this field since mid-1990’s.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"382 4","pages":""},"PeriodicalIF":8.6,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142512968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}