Topics in Current Chemistry最新文献

筛选
英文 中文
Current Advances in Aptasensors for Pesticide Detection
IF 8.6 2区 化学
Topics in Current Chemistry Pub Date : 2025-03-23 DOI: 10.1007/s41061-025-00498-9
Suthira Pushparajah, Mahnaz Shafiei, Aimin Yu
{"title":"Current Advances in Aptasensors for Pesticide Detection","authors":"Suthira Pushparajah,&nbsp;Mahnaz Shafiei,&nbsp;Aimin Yu","doi":"10.1007/s41061-025-00498-9","DOIUrl":"10.1007/s41061-025-00498-9","url":null,"abstract":"<div><p>The increasing use of pesticides necessitates the development of innovative analytical methods to regulate environmental impacts and ensure food safety. Aptamer-based sensors hold great promise for pesticide detection owing to their superior selectivity, stability, repeatability, and regenerative capabilities. Integrated with nanomaterials, aptasensors have demonstrated enhanced sensitivity for detecting a broad range of pesticides. This study first introduces the aptamer binding mechanism and presents the fundamental concept and justification for selecting aptamer over other biorecognition molecules. It then provides a comprehensive review of recent advancements and applications of various types of aptasensors for targeted pesticide detection, including electrochemical, fluorescent, colorimetric, electrochemiluminescent, and surface-enhanced Raman scattering (SERS) aptasensors. Additionally, it offers a comparative analysis of different aptasensors by evaluating their strengths and limitations. Finally, this review discusses strategies, such as advanced Systemic Evolution of Ligands by Exponential Enrichment (SELEX) technique, self-assembled monolayers (SAMs), and the use of antifouling agents to improve the aptamer’s selectivity, signal-to-noise ratio, and mitigate nonspecific adsorption challenges. These developments are essential for creating highly sensitive and selective aptasensors, facilitating their practical use in environmental monitoring and food safety.</p></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"383 2","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41061-025-00498-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143676370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applications of Bridgehead Heterocycles in Drug Design and Medicinal Chemistry
IF 8.6 2区 化学
Topics in Current Chemistry Pub Date : 2025-03-21 DOI: 10.1007/s41061-025-00502-2
Simona Di Martino, Pietro Amico, Maria De Rosa
{"title":"Applications of Bridgehead Heterocycles in Drug Design and Medicinal Chemistry","authors":"Simona Di Martino,&nbsp;Pietro Amico,&nbsp;Maria De Rosa","doi":"10.1007/s41061-025-00502-2","DOIUrl":"10.1007/s41061-025-00502-2","url":null,"abstract":"<div><p>Bridged heterocycles are highly relevant in medicinal chemistry and drug discovery due to the unique features associated with their three-dimensional configuration that ensures great scaffold complexity. In general, inserting bridged systems into a chemical structure positively influences the pharmacokinetic (PK) profile of leads, reducing lipophilicity and enhancing metabolic stability. Several optimization studies show that bridged systems often promoted a significant improvement of the small molecule–enzyme binding interaction due to conformational changes within the biological target active site. To date, many drugs including bridged cores are available in the market to cure several diseases. Given the broad range of biological activities of naturally occurring and (semi)-synthetic bridgehead heterocycles, here, we have thoroughly reviewed the rational design and the structure–activity relationship (SAR) studies of the most remarkable bridged compounds developed during the past decade, to highlight both the chemical and biological roles of these motifs.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"383 2","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143667984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Advances in the Mitsunobu and Related Reactions: A Review from 2010 to 2024
IF 8.6 2区 化学
Topics in Current Chemistry Pub Date : 2025-03-18 DOI: 10.1007/s41061-025-00501-3
Abdeslem Bouzina, Zineb Aouf, Aϊcha Amira, Yousra Ouafa Bouone, Houria Bentoumi, Yasmine Chemam, Malika Ibrahim-Ouali, Rachida Zerrouki, Nour-Eddine Aouf
{"title":"Recent Advances in the Mitsunobu and Related Reactions: A Review from 2010 to 2024","authors":"Abdeslem Bouzina,&nbsp;Zineb Aouf,&nbsp;Aϊcha Amira,&nbsp;Yousra Ouafa Bouone,&nbsp;Houria Bentoumi,&nbsp;Yasmine Chemam,&nbsp;Malika Ibrahim-Ouali,&nbsp;Rachida Zerrouki,&nbsp;Nour-Eddine Aouf","doi":"10.1007/s41061-025-00501-3","DOIUrl":"10.1007/s41061-025-00501-3","url":null,"abstract":"<div><p>This review discusses recent progress in the most significant synthetic approaches involving transformations under the Mitsunobu reaction. The Mitsunobu reaction entails the \"redox\" condensation of an acidic pronucleophile ‘<i>Nu</i>-H’ and an electrophilic primary or secondary alcohol, facilitated by stoichiometric amounts of phosphines and azodicarboxylate reagents. Widely utilized for dehydrative oxidation–reduction condensation, this reaction shows synthetic utility through its tolerance of a broad range of acidic pronucleophiles, including carboxylic acids, pro-imides, hydroxamates, phenols, thiols, fluorinated alcohols, oximes, thioamides, pyridinium and imidazolium salts, pyrimidine bases, <i>α</i>-ketoesters, and trimethylmethane tricarboxylate, thereby yielding a variety of functional and potentially biologically active compounds. The purpose of this review is to focus on recent advances and applications of Mitsunobu reaction chemistry, particularly from 2010 to 2024. In addition to discussing newer reagents that facilitate purification, we will describe contemporary applications of this chemistry, especially concerning the synthesis of potential biological compounds and their precursors. This focus review of the Mitsunobu reaction summarizes its origins, the current understanding of its mechanism, and recent improvements and applications. We aim for this work to serve as a useful resource for scientists working in this research domain.</p></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"383 2","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143638452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endohedral Metallofullerenes: Unveiling Synthesis Mechanisms and Advancing Photoelectric Energy Conversion Applications
IF 8.6 2区 化学
Topics in Current Chemistry Pub Date : 2025-03-14 DOI: 10.1007/s41061-025-00500-4
Weifeng Chen, Meiyan Huang, Mixue Wu, Yizhu Lei
{"title":"Endohedral Metallofullerenes: Unveiling Synthesis Mechanisms and Advancing Photoelectric Energy Conversion Applications","authors":"Weifeng Chen,&nbsp;Meiyan Huang,&nbsp;Mixue Wu,&nbsp;Yizhu Lei","doi":"10.1007/s41061-025-00500-4","DOIUrl":"10.1007/s41061-025-00500-4","url":null,"abstract":"<div><p>Endohedral metallofullerenes (EMFs) have garnered significant attention for their distinctive properties and potential integration into cutting-edge photoelectric devices. This review provides a comprehensive overview of recent advancements in EMF synthesis, highlighting the novel “self-driven carbon atom implantation” approach that sheds new light on the underlying mechanisms of EMF formation. The discussion delves into pivotal challenges related to yield optimization and purification processes, addressing current limitations and the imperative need for scalable synthesis and improved stability. Furthermore, the review explores the burgeoning applications of EMFs in photoelectric energy conversion, focusing on their capacity to enhance the efficiency of photovoltaic devices. Their unique electronic structures and tunable energy levels are highlighted as key factors contributing to improved charge separation and overall performance. In conclusion, this review offers a forward-looking perspective on interdisciplinary research avenues essential for harnessing the full potential of EMFs. It underscores the need for collaborative efforts across materials science, chemistry, and nanotechnology to overcome existing hurdles and to integrate EMFs into next-generation energy conversion technologies, thereby paving the way for more efficient and sustainable energy solutions.</p></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"383 2","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143622142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Advances in Smart Linkage Strategies for Developing Drug Conjugates for Targeted Delivery
IF 8.6 2区 化学
Topics in Current Chemistry Pub Date : 2025-03-13 DOI: 10.1007/s41061-025-00497-w
Jie Zhang, Zeyu Yang, Yu Liu, Yuying Liu, Jingkun Qu, Xiaoyan Pan
{"title":"Recent Advances in Smart Linkage Strategies for Developing Drug Conjugates for Targeted Delivery","authors":"Jie Zhang,&nbsp;Zeyu Yang,&nbsp;Yu Liu,&nbsp;Yuying Liu,&nbsp;Jingkun Qu,&nbsp;Xiaoyan Pan","doi":"10.1007/s41061-025-00497-w","DOIUrl":"10.1007/s41061-025-00497-w","url":null,"abstract":"<div><p>Targeted drug delivery systems effectively solve the problem of off-target toxicity of chemotherapeutic drugs by combining chemotherapeutic drugs with antibodies or peptides, thereby promoting drug targeting to the tumor site and bringing further hope for cancer treatment. The development of stimulus-responsive smart linkage technologies has led to the emergence of drug conjugates. Linkage technologies play a crucial role in the design, synthesis, and in vivo circulation of drug conjugates, as they determine the release of cytotoxic drugs from the conjugates and their subsequent therapeutic efficacy. This article reviews some of the smart linkage strategies used in designing drug conjugates, with a focus on the tumor microenvironment and exogenous stimuli as conditions influencing controlled drug release. This review introduces linker classifications and cleavage mechanisms, discusses modular linkers that promote the efficient synthesis of conjugates, and discusses the differences between linkage strategies. Furthermore, this article focuses on the implementation of self-assembly in drug conjugates, which is currently of great interest. Related concepts are introduced and relevant examples of their applications are provided. Furthermore, a comprehensive discourse is presented on the challenges that may arise in the research and clinical implementation of diverse linkage strategies, along with the associated enhancement measures. Finally, the factors that should be considered when designing linkage strategies for drug conjugates are summarized, offering strategies and ideas for scientists involved in drug conjugate research. It is particularly noteworthy that appropriate linkage strategies allow for the intracellular release of drugs after internalization of the conjugates, thereby maximizing their tumor cell-killing effect.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"383 2","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143602160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward Realization of Bioorthogonal Chemistry in the Clinic
IF 8.6 2区 化学
Topics in Current Chemistry Pub Date : 2025-03-05 DOI: 10.1007/s41061-025-00495-y
Kim E. de Roode, Raffaella Rossin, Marc S. Robillard
{"title":"Toward Realization of Bioorthogonal Chemistry in the Clinic","authors":"Kim E. de Roode,&nbsp;Raffaella Rossin,&nbsp;Marc S. Robillard","doi":"10.1007/s41061-025-00495-y","DOIUrl":"10.1007/s41061-025-00495-y","url":null,"abstract":"<div><p>In the last decade, the use of bioorthogonal chemistry toward medical applications has increased tremendously. Besides being useful for the production of pharmaceuticals, the efficient, nontoxic reactions open possibilities for the development of therapies that rely on in vivo chemistry between two bioorthogonal components. Here we discuss the latest developments in bioorthogonal chemistry, with a focus on their use in living organisms, the translation from model systems to humans, and the challenges encountered during preclinical development. We aim to provide the reader a broad presentation of the current state of the art and demonstrate the numerous possibilities that bioorthogonal reactions have for clinical use, now and in the near future.</p></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"383 2","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41061-025-00495-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143554060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CO2 Fixation into Useful Aromatic Carboxylic Acids via C (sp2)–X Bonds Functionalization 通过 C (sp2)-X 键官能化将二氧化碳固定为有用的芳香族羧酸
IF 8.6 2区 化学
Topics in Current Chemistry Pub Date : 2025-03-03 DOI: 10.1007/s41061-025-00496-x
Youwen Chen, Meihua Chen, Xinyu Li, Xinhua Xu, Shuang-Feng Yin, Renhua Qiu
{"title":"CO2 Fixation into Useful Aromatic Carboxylic Acids via C (sp2)–X Bonds Functionalization","authors":"Youwen Chen,&nbsp;Meihua Chen,&nbsp;Xinyu Li,&nbsp;Xinhua Xu,&nbsp;Shuang-Feng Yin,&nbsp;Renhua Qiu","doi":"10.1007/s41061-025-00496-x","DOIUrl":"10.1007/s41061-025-00496-x","url":null,"abstract":"<div><p>Carbon dioxide (CO<sub>2</sub>) is an abundant and readily available carbon source. Its transformation into high-added-value chemicals is a beneficial strategy, which mitigates greenhouse gas emissions and provides new raw material sources for the chemical industry. Among these chemicals, the aromatic carboxylic acids and derivatives have broad applications in medicine, pesticides, and materials science. Therefore, the carboxylation of C(sp<sup>2</sup>)-X (X = metal, halide, H, O, or S) bonds with CO<sub>2</sub> to efficiently construct aromatic carboxylic acids and their derivatives is a synthetic strategy of significance. This review highlights the recent progress in constructing carboxylic acids and derivatives through the carboxylation of C(sp<sup>2</sup>)-X bonds with CO<sub>2</sub> including literature published from 2000 to December 2024.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"383 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143529917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Fundamentals to Synthesis: Covalent Organic Frameworks as Promising Materials for CO2 Adsorption
IF 8.6 2区 化学
Topics in Current Chemistry Pub Date : 2025-02-22 DOI: 10.1007/s41061-025-00494-z
Awais Ali Aslam, Sania Amjad, Adnan Irshad, Osama Kokab, Mudassar Sana Ullah, Awais Farid, Rana Adeel Mehmood, Sadaf Ul Hassan, Muhammad Shahid Nazir, Mahmood Ahmed
{"title":"From Fundamentals to Synthesis: Covalent Organic Frameworks as Promising Materials for CO2 Adsorption","authors":"Awais Ali Aslam,&nbsp;Sania Amjad,&nbsp;Adnan Irshad,&nbsp;Osama Kokab,&nbsp;Mudassar Sana Ullah,&nbsp;Awais Farid,&nbsp;Rana Adeel Mehmood,&nbsp;Sadaf Ul Hassan,&nbsp;Muhammad Shahid Nazir,&nbsp;Mahmood Ahmed","doi":"10.1007/s41061-025-00494-z","DOIUrl":"10.1007/s41061-025-00494-z","url":null,"abstract":"<div><p>Covalent organic frameworks (COFs) are highly crystalline polymers that possess exceptional porosity and surface area, making them a subject of significant research interest. COF materials are synthesized by chemically linking organic molecules in a repetitive arrangement, creating a highly effective porous crystalline structure that adsorbs and retains gases. They are highly effective in removing impurities, such as CO<sub>2</sub>, because of their desirable characteristics, such as durability, high reactivity, stable porosity, and increased surface area. This study offers a background overview, encompassing a concise discussion of the current issue of excessive carbon emissions, and a synopsis of the materials most frequently used for CO<sub>2</sub> collection. This review provides a detailed overview of COF materials, particularly emphasizing their synthesis methods and applications in carbon capture. It presents the latest research findings on COFs synthesized using various covalent bond formation techniques. Moreover, it discusses emerging trends and future prospects in this particular field.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"383 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143471936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding the Electrochemical MOF Sensors in Detecting Cancer with Special Emphasis on Breast Carcinoma Biomarkers
IF 8.6 2区 化学
Topics in Current Chemistry Pub Date : 2025-02-18 DOI: 10.1007/s41061-025-00493-0
Brij Mohan, Krunal Modi, Gurjaspreet Singh, Anup Paul, Ismayil M. Garazade, Armando J. L. Pombeiro, Xuefeng Liu, Wei Sun, Sang Sub Kim
{"title":"Understanding the Electrochemical MOF Sensors in Detecting Cancer with Special Emphasis on Breast Carcinoma Biomarkers","authors":"Brij Mohan,&nbsp;Krunal Modi,&nbsp;Gurjaspreet Singh,&nbsp;Anup Paul,&nbsp;Ismayil M. Garazade,&nbsp;Armando J. L. Pombeiro,&nbsp;Xuefeng Liu,&nbsp;Wei Sun,&nbsp;Sang Sub Kim","doi":"10.1007/s41061-025-00493-0","DOIUrl":"10.1007/s41061-025-00493-0","url":null,"abstract":"<div><p>Cancer is a disease that claims millions of lives each year, often because early symptoms go unnoticed, a situation which severely impacts society. Point-of-care biosensors using metal–organic frameworks (MOFs) have the power to transform cancer biomarker detection due to their exceptional structural and conductive properties. This review discusses the electrochemical sensor’s design and development of electroactive MOF materials with mechanistic insights. It highlights recent advancements in utilizing MOF composites to effectively detect cancer biomarkers in real samples. The emphasis on the critical application of MOFs in breast cancer biomarker detection presents its importance for women’s health. The review thoroughly examines the adjustable structures, porosity, and fabrication capabilities of MOFs in identifying cancer biomarkers. It provides a detailed analysis of methods to enhance the sensitivity and applicability of MOF composites for cancer detection. Furthermore, the review explores strategies to boost sensor performance, tackles existing challenges head-on, and outlines promising prospects. It emphasizes the urgent need for advanced cancer detection tools and aims to motivate researchers to develop innovative solutions.</p><h3>Graphical Abstract</h3><p>The paper discusses cancer’s impact, electrochemical sensing with MOFs, and recent advances in detecting biomarkers in real samples. It focuses on using MOFs for breast cancer detection in women, highlighting their potential in identifying cancer biomarkers. It also explores strategies to enhance sensor capacity, address challenges, and outline prospects to inspire researchers to develop advanced cancer detection tools.</p>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"383 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143438611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in Coordination Chemistry of Schiff Base Complexes: A Journey from Nanoarchitectonic Design to Biomedical Applications
IF 8.6 2区 化学
Topics in Current Chemistry Pub Date : 2025-02-03 DOI: 10.1007/s41061-025-00489-w
Ahmad Abd-El-Aziz, Zexuan Li, Xinyue Zhang, Sherif Elnagdy, Mohamed S. Mansour, Ahmed ElSherif, Ning Ma, Alaa S. Abd-El-Aziz
{"title":"Advances in Coordination Chemistry of Schiff Base Complexes: A Journey from Nanoarchitectonic Design to Biomedical Applications","authors":"Ahmad Abd-El-Aziz,&nbsp;Zexuan Li,&nbsp;Xinyue Zhang,&nbsp;Sherif Elnagdy,&nbsp;Mohamed S. Mansour,&nbsp;Ahmed ElSherif,&nbsp;Ning Ma,&nbsp;Alaa S. Abd-El-Aziz","doi":"10.1007/s41061-025-00489-w","DOIUrl":"10.1007/s41061-025-00489-w","url":null,"abstract":"<div><p>Since the discovery of Schiff bases over one and a half centuries ago, there has been tremendous research activity in the design of various Schiff bases and examination of their diverse structures and versatile applications. This family of compounds has continued to captivate many research groups due to the simplicity of their synthesis through the condensation of amines with carbonyl compounds. While conventional synthesis has been the most widely used, green synthetic methodologies have been also explored for this reaction, including sonication, microwave-assisted, natural acid-catalyzed and mechanochemical syntheses as well as utilizing ionic liquid solvents or deep eutectic solvents. Schiff bases have been utilized as excellent ligands for coordination to transition metals and late transition metals (lanthanides and actinides). These Schiff base compounds can be mono-, di-, or polydentate ligands. The aim of this review is to examine the biological applications of Schiff base complexes over the past decade with particular focus on their antimicrobial, antiviral, anticancer, antidiabetic, and anti-inflammatory activity. Schiff base complexes have been found effective in combating bacterial and fungal infections with numerous examples in the literature. The review addressed this area by focusing on the very recent examples while using tables to summarize the vast breadth of research according to the metallic moieties. Viruses have continued to be a target of many researchers in light of their continuous mutations and impact on human health, and therefore some examples of Schiff base complexes with antiviral activity are described. Cancer continues to be among the leading causes of death worldwide. In this article, the use of Schiff base complexes for, and the mechanisms associated with, their anticancer activity are highlighted. The production of reactive oxygen species (ROS) or intercalation with DNA base pairs leading to cell cycle arrest were the main mechanisms described. While there have been some efforts made to use Schiff base complexes as antidiabetic or anti-inflammatory agents, there are limited examples when compared with antimicrobial and anticancer studies. The conclusion of this review highlights the emerging areas of research and future perspectives with an emphasis on the potential uses of Schiff bases in the treatment of infectious and noninfectious diseases.</p></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"383 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143107869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信