Applications of Bridgehead Heterocycles in Drug Design and Medicinal Chemistry

IF 8.6 2区 化学 Q1 Chemistry
Simona Di Martino, Pietro Amico, Maria De Rosa
{"title":"Applications of Bridgehead Heterocycles in Drug Design and Medicinal Chemistry","authors":"Simona Di Martino,&nbsp;Pietro Amico,&nbsp;Maria De Rosa","doi":"10.1007/s41061-025-00502-2","DOIUrl":null,"url":null,"abstract":"<div><p>Bridged heterocycles are highly relevant in medicinal chemistry and drug discovery due to the unique features associated with their three-dimensional configuration that ensures great scaffold complexity. In general, inserting bridged systems into a chemical structure positively influences the pharmacokinetic (PK) profile of leads, reducing lipophilicity and enhancing metabolic stability. Several optimization studies show that bridged systems often promoted a significant improvement of the small molecule–enzyme binding interaction due to conformational changes within the biological target active site. To date, many drugs including bridged cores are available in the market to cure several diseases. Given the broad range of biological activities of naturally occurring and (semi)-synthetic bridgehead heterocycles, here, we have thoroughly reviewed the rational design and the structure–activity relationship (SAR) studies of the most remarkable bridged compounds developed during the past decade, to highlight both the chemical and biological roles of these motifs.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"383 2","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Current Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41061-025-00502-2","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

Abstract

Bridged heterocycles are highly relevant in medicinal chemistry and drug discovery due to the unique features associated with their three-dimensional configuration that ensures great scaffold complexity. In general, inserting bridged systems into a chemical structure positively influences the pharmacokinetic (PK) profile of leads, reducing lipophilicity and enhancing metabolic stability. Several optimization studies show that bridged systems often promoted a significant improvement of the small molecule–enzyme binding interaction due to conformational changes within the biological target active site. To date, many drugs including bridged cores are available in the market to cure several diseases. Given the broad range of biological activities of naturally occurring and (semi)-synthetic bridgehead heterocycles, here, we have thoroughly reviewed the rational design and the structure–activity relationship (SAR) studies of the most remarkable bridged compounds developed during the past decade, to highlight both the chemical and biological roles of these motifs.

Graphical Abstract

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Topics in Current Chemistry
Topics in Current Chemistry 化学-化学综合
CiteScore
11.70
自引率
1.20%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Topics in Current Chemistry provides in-depth analyses and forward-thinking perspectives on the latest advancements in chemical research. This renowned journal encompasses various domains within chemical science and their intersections with biology, medicine, physics, and materials science. Each collection within the journal aims to offer a comprehensive understanding, accessible to both academic and industrial readers, of emerging research in an area that captivates a broader scientific community. In essence, Topics in Current Chemistry illuminates cutting-edge chemical research, fosters interdisciplinary collaboration, and facilitates knowledge-sharing among diverse scientific audiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信