Sensors & diagnostics最新文献

筛选
英文 中文
Recent advances in sensor arrays aided by machine learning for pathogen identification 机器学习辅助病原体识别传感器阵列的最新进展
IF 3.5
Sensors & diagnostics Pub Date : 2024-09-10 DOI: 10.1039/D4SD00229F
Xin Wang, Ting Yang and Jian-Hua Wang
{"title":"Recent advances in sensor arrays aided by machine learning for pathogen identification","authors":"Xin Wang, Ting Yang and Jian-Hua Wang","doi":"10.1039/D4SD00229F","DOIUrl":"10.1039/D4SD00229F","url":null,"abstract":"<p >The development of rapid and accurate pathogen detection methods is of paramount importance for slowing the evolution of antibiotic resistance in bacteria. However, the high similarity between different pathogens, especially between antibiotic-sensitive and antibiotic-resistant strains of the same species, presents great challenges for the precise discrimination of pathogens. In recent years, chemical nose strategies, <em>i.e.</em> sensor arrays, have achieved certain success in pathogen discrimination. Currently, chemical nose strategies for identifying pathogens are mainly designed from two perspectives: the disparity in extrinsic properties (biomolecules, charge, and hydrophobicity of the bacterial surface) and intrinsic properties (processes and products mediated by bacterial enzymes) among different pathogens. Biosensing probes capable of responding to these properties are introduced for pathogen detection. The output signals are then processed and analyzed by machine learning algorithms to visualize the multidimensional detection results and achieve pathogen discrimination. This paper introduces the latest developments in sensor arrays for pathogen identification based on the extrinsic and intrinsic nature of bacteria, highlights the recognition mechanism of probes for bacteria, and outlines the current challenges and prospects of sensor arrays for pathogen discrimination.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 10","pages":" 1590-1612"},"PeriodicalIF":3.5,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00229f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compact device prototype for turn-on fluorescence detection of sarin based on reactive 4,4-diaryloxy-BODIPY derivatives† 基于活性 4,4-二叔丁氧基-BODIPY 衍生物的沙林荧光检测紧凑型设备原型
IF 3.5
Sensors & diagnostics Pub Date : 2024-09-10 DOI: 10.1039/D4SD00228H
Lu Liu, Sheng Li, Wendan Luo, Jiashuang Yao, Taihong Liu, Molin Qin, Zhiyan Huang, Liping Ding and Yu Fang
{"title":"Compact device prototype for turn-on fluorescence detection of sarin based on reactive 4,4-diaryloxy-BODIPY derivatives†","authors":"Lu Liu, Sheng Li, Wendan Luo, Jiashuang Yao, Taihong Liu, Molin Qin, Zhiyan Huang, Liping Ding and Yu Fang","doi":"10.1039/D4SD00228H","DOIUrl":"10.1039/D4SD00228H","url":null,"abstract":"<p >Development of fluorescence indicators for efficient and accurate detection of lethal nerve agents has evoked extensive interest recently. Herein, we presented two spiranic 4,4-diaryloxy-BODIPY derivatives for efficient and fluorescence turn-on detection of sarin in solution media. A colorimetric mode featured the merits of obvious color changes from dark to greenish fluorescence under UV light. The generated new fluorescence emissions reached their maxima within several minutes and the peaks were assigned to the generated by-product oxo-BDP with a fluorescence quantum yield (<em>Φ</em><small><sub>F</sub></small>) ∼ 20% in acetonitrile. The detection limits of two 4,4-diaryloxy-BODIPYs for a simulant diethylchlorophosphate (DCP) were determined to be 13.2 nM and 8.2 nM, respectively. The underlying sensing mechanism was clarified as the synergistic effect of 4,4-bond cleaving and fluorescence turn-on related to the photoinduced electron transfer process. Furthermore, a compact tubular sensor and a sensing platform prototype were fabricated properly. Superior detection results and further evaluation for real samples and simulants could be conducted at the sub-mM level on-site. Successful trials aid in understanding the structure–function relationship of 4,4-disubstituted BODIPY chromophores as well as the future development of a miniaturized device prototype for on-site detection of chemical warfare agents.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 10","pages":" 1651-1658"},"PeriodicalIF":3.5,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00228h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Outstanding Reviewers for Sensors & Diagnostics in 2023 2023 年传感器与诊断领域的杰出评审员
IF 3.5
Sensors & diagnostics Pub Date : 2024-09-06 DOI: 10.1039/D4SD90030H
{"title":"Outstanding Reviewers for Sensors & Diagnostics in 2023","authors":"","doi":"10.1039/D4SD90030H","DOIUrl":"10.1039/D4SD90030H","url":null,"abstract":"<p >We would like to take this opportunity to thank all of <em>Sensors &amp; Diagnostics</em>'s reviewers for helping to preserve quality and integrity in chemical science literature. We would also like to highlight the Outstanding Reviewers for <em>Sensors &amp; Diagnostics</em> in 2023.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 10","pages":" 1589-1589"},"PeriodicalIF":3.5,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd90030h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An rGO-doped laser induced graphene electrochemical biosensor for highly sensitive exosome detection 用于高灵敏度外泌体检测的掺杂 rGO 的激光诱导石墨烯电化学生物传感器
IF 3.5
Sensors & diagnostics Pub Date : 2024-09-02 DOI: 10.1039/D4SD00181H
Xiaoshuang Chen, Xiaohui Yan, Jiaoyan Qiu, Xue Zhang, Yunhong Zhang, Hongpeng Zhou, Yujuan Zhao, Lin Han and Yu Zhang
{"title":"An rGO-doped laser induced graphene electrochemical biosensor for highly sensitive exosome detection","authors":"Xiaoshuang Chen, Xiaohui Yan, Jiaoyan Qiu, Xue Zhang, Yunhong Zhang, Hongpeng Zhou, Yujuan Zhao, Lin Han and Yu Zhang","doi":"10.1039/D4SD00181H","DOIUrl":"10.1039/D4SD00181H","url":null,"abstract":"<p >In this study, we developed a novel electrochemical sensing chip integrated with reduced graphene oxide (rGO) with laser-induced graphene (LIG) for the detection of exosomes associated with breast cancer biomarkers. Employing laser-induced technology, a three-dimensional porous graphene material is fabricated on the surface of a flexible polyimide film, which is subsequently combined with rGO through π–π stacking. This integration facilitates the doping of two-dimensional and three-dimensional material (2D/3D) structures, significantly enhancing the conductivity of the electrode material. Additionally, this approach markedly improves the surface hydrophobicity and biomolecule affinity of LIG, optimizing the immobilization of specific antibodies for exosomes. Importantly, this experiment marks the first occasion of merging two-dimensional rGO with three-dimensional LIG, resulting in the construction of a high-performance biosensing chip that enables specific capture and highly sensitive detection of exosomes. Under optimized conditions, the quantitative detection range for exosomes is established at 5 × 10<small><sup>2</sup></small> to 5 × 10<small><sup>5</sup></small> particles per μL, with a limit of detection (LOD) of 166 particles per μL. The biosensor is successfully used to analyze exosomes in breast cancer cell lines and patient serum samples, proving its practical application. This electrochemical biosensing chip offers significant practical application value in the early screening and diagnosis of diseases.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 10","pages":" 1724-1732"},"PeriodicalIF":3.5,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00181h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clozapine sensing through paper-based microfluidic sensors directly modified via electro-deposition and electro-polymerization† 通过电沉积和电聚合直接修饰的纸基微流体传感器传感氯氮平
IF 3.5
Sensors & diagnostics Pub Date : 2024-08-28 DOI: 10.1039/D4SD00252K
Mohammad Hossein Ghanbari, Markus Biesalski, Oliver Friedrich and Bastian J. M. Etzold
{"title":"Clozapine sensing through paper-based microfluidic sensors directly modified via electro-deposition and electro-polymerization†","authors":"Mohammad Hossein Ghanbari, Markus Biesalski, Oliver Friedrich and Bastian J. M. Etzold","doi":"10.1039/D4SD00252K","DOIUrl":"10.1039/D4SD00252K","url":null,"abstract":"<p >Microfluidic electrochemical sensors (μCS) can be portable, highly sensitive, and low-cost but are less frequently studied nor applied. Additionally, simultaneous electro-deposition of gold nanoparticles (ED (AuNPs)) and electro-polymerization of <small>L</small>-cysteine (EP (<small>L</small>-cys)) are introduced for the first time for modifying the surface of the working electrode through a paper-based microfluidic sensor. This study depicts that by employing such modification, the electrochemically active surface area (ECSA) and the electron transfer rate are increased together and result in improved sensitivity. The modified μCS is depicted to enable sensitive voltametric determination of, <em>e.g.</em>, clozapine (CLZ), an anti-psychotic drug to treat schizophrenia. The proposed sensor was characterized by different techniques, and several key parameters were optimized. Under the optimum conditions and using square-wave voltametry (SWV), a linear dose–response for a concentration range from 0.5 to 10.0 μM of CLZ was achieved. The limit of detection and sensitivity resulted in 70.0 nM and 0.045 mA cm<small><sup>−2</sup></small> μM<small><sup>−1</sup></small>, respectively. Besides, this excellent sensitivity combines with high stability, which was tested for six repetitive measurements with a single device resulting in high reproducibility. Additionally, this procedure was validated with measurements of clozapine in human blood plasma, which demonstrated the excellent applicability of the device, rendering it a promising platform for point-of-care diagnostics and environmental monitoring.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 10","pages":" 1749-1758"},"PeriodicalIF":3.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00252k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a portable electrochemical sensing platform for impedance spectroscopy-based biosensing using an ARM-based microcontroller† 利用基于 ARM 的微控制器开发基于阻抗光谱生物传感的便携式电化学传感平台
IF 3.5
Sensors & diagnostics Pub Date : 2024-08-24 DOI: 10.1039/D4SD00234B
Joseph Charles Khavul Spiro, Kundan Kumar Mishra, Vikram Narayanan Dhamu, Avi Bhatia, Sriram Muthukumar and Shalini Prasad
{"title":"Development of a portable electrochemical sensing platform for impedance spectroscopy-based biosensing using an ARM-based microcontroller†","authors":"Joseph Charles Khavul Spiro, Kundan Kumar Mishra, Vikram Narayanan Dhamu, Avi Bhatia, Sriram Muthukumar and Shalini Prasad","doi":"10.1039/D4SD00234B","DOIUrl":"10.1039/D4SD00234B","url":null,"abstract":"<p >Detecting pesticides like atrazine is a significant global health challenge due to their association with numerous foodborne illnesses. Traditional detection methods often lack sensitivity and time efficiency, highlighting the urgent need for improved early detection techniques to mitigate pesticide contamination and outbreaks. This study introduces a novel portable electrochemical prototype that integrates an ARM-based microcontroller with an impedance spectroscopy (EIS)-based biosensing system. The data processed through the algorithm generates easily interpretable impedance values. The platform demonstrates a broad detection range for atrazine (1 fg mL<small><sup>−1</sup></small> to 10 ng mL<small><sup>−1</sup></small>) with a limit of detection (LoD) of 1 fg mL<small><sup>−1</sup></small> and an assay processing time of approximately 5 minutes, showcasing its remarkable efficiency. The sensor consistently maintains cross-reactivity variation below 20%, ensuring reliable performance. This research aims to offer a low-cost, replicable mobile platform for biosensing applications, thereby enhancing access for individuals with limited lab-based research experience and broadening the scope of proactive pesticide monitoring.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 11","pages":" 1835-1842"},"PeriodicalIF":3.5,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00234b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The importance of antibody orientation for enhancing sensitivity and selectivity in lateral flow immunoassays 抗体定向对提高横向流动免疫测定灵敏度和选择性的重要性
IF 3.5
Sensors & diagnostics Pub Date : 2024-08-23 DOI: 10.1039/D4SD00206G
Zhao-Yu Lu and Yang-Hsiang Chan
{"title":"The importance of antibody orientation for enhancing sensitivity and selectivity in lateral flow immunoassays","authors":"Zhao-Yu Lu and Yang-Hsiang Chan","doi":"10.1039/D4SD00206G","DOIUrl":"10.1039/D4SD00206G","url":null,"abstract":"<p >In the field of point-of-care diagnostics, lateral flow assays (LFAs) stand out as highly promising due to their compact size, ease of use, and rapid analysis times. These attributes make LFAs invaluable, especially in urgent situations or resource-limited regions. However, their Achilles' heel has always been their limited sensitivity and selectivity. To address these issues, various innovative approaches, including sample enrichment, assay optimization, and signal amplification, have been developed and are extensively discussed in the literature. Despite these advancements, the importance of antibody orientation is often neglected, even though improper orientation can significantly impair detection performance. This review article first explores well-established traditional methodologies, such as minor physical adjustments and non-specific chemical bond formations. It then shifts focus to the oriented immobilization of antibodies on probe surfaces. This approach aims to enhance sensitivity and selectivity fundamentally by leveraging protein affinities or complementary amino acid sequences. The review summarizes the impact of antibody orientation on the analytical performance of LFAs in terms of sensitivity, specificity, speed, reliability, cost-effectiveness, and stability. Additionally, we introduce recent modifications to assay membrane materials and discuss the current limitations and future prospects of LFAs.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 10","pages":" 1613-1634"},"PeriodicalIF":3.5,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00206g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Colorimetric nano-biosensor for low-resource settings: insulin as a model biomarker 用于低资源环境的比色纳米生物传感器:以胰岛素为模型生物标记物
IF 3.5
Sensors & diagnostics Pub Date : 2024-08-23 DOI: 10.1039/D4SD00197D
Zia ul Quasim Syed, Sathya Samaraweera, Zhuo Wang and Sadagopan Krishnan
{"title":"Colorimetric nano-biosensor for low-resource settings: insulin as a model biomarker","authors":"Zia ul Quasim Syed, Sathya Samaraweera, Zhuo Wang and Sadagopan Krishnan","doi":"10.1039/D4SD00197D","DOIUrl":"10.1039/D4SD00197D","url":null,"abstract":"<p >Biomarkers provide critical molecular insights into diseases and abnormal conditions. However, detecting them at ultra-low concentrations is a challenge, particularly in areas with limited resources and access to sophisticated instruments. Our research is primarily focused on mitigating this challenge. In this report, we introduce a colorimetric immunosensor for detecting insulin, an essential hormone biomarker that regulates glucose metabolism, at picomolar concentrations using citrate-functionalized magnetic particles. This immunosensor utilizes a two-antibody sandwich immunoassay: one antibody is covalently conjugated to the nanoparticles to capture and isolate the target marker, while the other is labeled with horseradish peroxidase for colorimetric detection of insulin. We conducted comparative analyses of insulin detection in buffer, saliva, and serum samples, offering valuable analytical insights. Our findings indicate a detection limit of 10 pM, with dynamic ranges of 10 pM to 1 nM, 10 pM to 10 nM, and 50 pM to 1 nM for insulin detection in buffer solution, 2-fold diluted serum, and 20-fold diluted artificial saliva, respectively. We demonstrate the application of the color immunosensor to type 1 diabetes and healthy human serum samples. For human saliva analysis, the detection limit needs to be improved in our future studies. Overall, our study enhances biomarker analysis in biofluids through an equipment-free colorimetric method, which is particularly relevant for point-of-need applications.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 10","pages":" 1659-1671"},"PeriodicalIF":3.5,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00197d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solid-state nanopore counting of amplicons from recombinase polymerase isothermal amplification† 对重组酶聚合酶等温扩增产生的扩增子进行固态纳米孔计数
IF 3.5
Sensors & diagnostics Pub Date : 2024-08-23 DOI: 10.1039/D4SD00159A
Breeana Elliott, Martin Charron, John Pezacki, Erin McConnell and Vincent Tabard-Cossa
{"title":"Solid-state nanopore counting of amplicons from recombinase polymerase isothermal amplification†","authors":"Breeana Elliott, Martin Charron, John Pezacki, Erin McConnell and Vincent Tabard-Cossa","doi":"10.1039/D4SD00159A","DOIUrl":"10.1039/D4SD00159A","url":null,"abstract":"<p >Single-molecule detection methods based on electrical readout can transform disease diagnostics by miniaturizing the downstream sensor to enable sensitive and rapid biomarker quantification at the point-of-care. In particular, solid-state nanopores can be used as single-molecule electrical counters for a variety of biomedical applications, including biomarker detection. Integrating nanopores with efficient DNA amplification methods can improve upon sensitivity and accessibility concerns often present in disease detection. Here, we present nanopores as biosensors downstream of a reverse-transcription recombinase polymerase amplification (RT-RPA)-based assay targeting synthetic SARS-CoV-2 RNA. We demonstrate the efficacy of nanopore-integrated RT-RPA for the direct electrical detection of target amplicons, and discuss challenges from RPA-based assays and adaptations that facilitate solid-state nanopore readout.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 10","pages":" 1733-1742"},"PeriodicalIF":3.5,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00159a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In situ interface reaction-enabled electrochemiluminescence imaging for single-cell formaldehyde release analysis† 用于单细胞甲醛释放分析的原位界面反应电化学发光成像†.
IF 3.5
Sensors & diagnostics Pub Date : 2024-08-20 DOI: 10.1039/D4SD00177J
Juanhua Zhou and Yang Liu
{"title":"In situ interface reaction-enabled electrochemiluminescence imaging for single-cell formaldehyde release analysis†","authors":"Juanhua Zhou and Yang Liu","doi":"10.1039/D4SD00177J","DOIUrl":"https://doi.org/10.1039/D4SD00177J","url":null,"abstract":"<p >Monitoring metabolites <em>in situ</em> at the single-cell scale is important for revealing cellular heterogeneity and dynamic changes of cell status, which provides new possibilities for disease research. Benefiting from the advantages of both electrochemical and optical methods, electrochemiluminescence (ECL) has great potential in this field. However, developing real-time <em>in situ</em> imaging methods is full of challenges. In this study, an ECL imaging method for formaldehyde (FA), a kind of cellular metabolite, was developed based on the <em>in situ</em> generation of co-reactants at the electrode interface and was successfully applied to the monitoring of single-cell FA release. Amino groups can undergo a rapid nucleophilic addition reaction with FA to form amino alcohol intermediates, which can be used as co-reactants for tris(2,2′-bipyridyl)ruthenium(<small>II</small>) [Ru(bpy)<small><sub>3</sub></small><small><sup>2+</sup></small>] to significantly enhance the strength of ECL. Poly(amidoamine) (PAMAM), with a large number of amino groups, and reduced graphene oxide (rGO), with excellent electrical conductivity and electrocatalytic properties, were introduced as the modification layer on the electrode surface to realize the “turn on” detection of FA. This sensing method also eliminated the use of the classic toxic co-reactant tripropylamine (TPrA) and was further applied to <em>in situ</em> imaging of single-cell FA release. It successfully obtained ECL images at different time points after the stimulation of HeLa cells with thapsigargin (TG), revealing the change pattern in drug efficacy over time. This work proposes a new ECL imaging approach for real-time <em>in situ</em> monitoring of FA release from single cells, further broadening the application of ECL imaging in single-cell analysis.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 9","pages":" 1571-1578"},"PeriodicalIF":3.5,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/sd/d4sd00177j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142169808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信