Ultrasensitive electrochemical detection of methotrexate in biological fluids using NiMn2O4/CNT nanocomposite-modified electrode†

IF 4.1 Q2 CHEMISTRY, ANALYTICAL
Nasir Abbas and Tae Hyun Kim
{"title":"Ultrasensitive electrochemical detection of methotrexate in biological fluids using NiMn2O4/CNT nanocomposite-modified electrode†","authors":"Nasir Abbas and Tae Hyun Kim","doi":"10.1039/D5SD00064E","DOIUrl":null,"url":null,"abstract":"<p >Methotrexate (MTX) is a widely used chemotherapeutic drug with a narrow therapeutic index, making its precise monitoring crucial for effective treatment and minimizing side effects. This study focuses on the development of a clinically applicable NiMn<small><sub>2</sub></small>O<small><sub>4</sub></small>/CNT nanocomposite-modified glassy carbon electrode (NiMn<small><sub>2</sub></small>O<small><sub>4</sub></small>/CNT-GCE) for the sensitive and selective electrochemical detection of MTX. The NiMn<small><sub>2</sub></small>O<small><sub>4</sub></small> nanomaterial was synthesized <em>via</em> a co-precipitation method followed by calcination, and its composite with CNTs was optimized to enhance electrochemical performance. The sensor demonstrated a detection limit as low as 0.627 nM and a broad linear detection range (0.05–3 μM), attributed to the synergistic effects of NiMn<small><sub>2</sub></small>O<small><sub>4</sub></small> and CNTs that enhance electron transfer and active site availability. Moreover, the NiMn<small><sub>2</sub></small>O<small><sub>4</sub></small>/CNT-GCE was successfully applied to detect MTX in spiked serum and urine samples, achieving recovery rates of 96–99% with relative standard deviations below 3.5%. Its minimal interference with common metabolites and excellent stability makes it ideal for therapeutic drug monitoring. This work underscores the potential of NiMn<small><sub>2</sub></small>O<small><sub>4</sub></small>/CNT as a promising platform for real-time clinical diagnostics and advanced electrochemical sensing applications.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" 9","pages":" 803-814"},"PeriodicalIF":4.1000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sd/d5sd00064e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors & diagnostics","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/sd/d5sd00064e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Methotrexate (MTX) is a widely used chemotherapeutic drug with a narrow therapeutic index, making its precise monitoring crucial for effective treatment and minimizing side effects. This study focuses on the development of a clinically applicable NiMn2O4/CNT nanocomposite-modified glassy carbon electrode (NiMn2O4/CNT-GCE) for the sensitive and selective electrochemical detection of MTX. The NiMn2O4 nanomaterial was synthesized via a co-precipitation method followed by calcination, and its composite with CNTs was optimized to enhance electrochemical performance. The sensor demonstrated a detection limit as low as 0.627 nM and a broad linear detection range (0.05–3 μM), attributed to the synergistic effects of NiMn2O4 and CNTs that enhance electron transfer and active site availability. Moreover, the NiMn2O4/CNT-GCE was successfully applied to detect MTX in spiked serum and urine samples, achieving recovery rates of 96–99% with relative standard deviations below 3.5%. Its minimal interference with common metabolites and excellent stability makes it ideal for therapeutic drug monitoring. This work underscores the potential of NiMn2O4/CNT as a promising platform for real-time clinical diagnostics and advanced electrochemical sensing applications.

Abstract Image

NiMn2O4/CNT纳米复合修饰电极†对生物体液中甲氨蝶呤的超灵敏电化学检测
甲氨蝶呤(Methotrexate, MTX)是一种应用广泛的化疗药物,治疗指标较窄,对其进行精确监测对于有效治疗和减少副作用至关重要。本研究的重点是开发一种临床适用的NiMn2O4/CNT纳米复合修饰玻碳电极(NiMn2O4/CNT- gce),用于MTX的敏感和选择性电化学检测。采用共沉淀法和煅烧法制备了NiMn2O4纳米材料,并对其与CNTs的复合进行了优化,以提高其电化学性能。该传感器的检出限低至0.627 nM,线性检测范围宽(0.05 ~ 3 μM),这主要归功于NiMn2O4和CNTs的协同作用,增强了电子转移和活性位点的可用性。此外,NiMn2O4/CNT-GCE成功应用于加样血清和尿液中MTX的检测,回收率为96 ~ 99%,相对标准偏差小于3.5%。它对常见代谢物的干扰最小,稳定性好,是治疗药物监测的理想选择。这项工作强调了NiMn2O4/CNT作为实时临床诊断和先进电化学传感应用的有前途的平台的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信