One-pot assembling pyrroloquinoline quinone glucose dehydrogenase with polydopamine to overcome the reproducibility issues of layer-by-layer electrode development.

IF 4.1 Q2 CHEMISTRY, ANALYTICAL
Alessandra Cimino, Shixin Wang, Verdiana Marchianò, Angelo Tricase, Angela Stefanachi, Eleonora Macchia, Blanca Cassano, Luisa Torsi, Xiaoming Zhang, Paolo Bollella
{"title":"One-pot assembling pyrroloquinoline quinone glucose dehydrogenase with polydopamine to overcome the reproducibility issues of layer-by-layer electrode development.","authors":"Alessandra Cimino, Shixin Wang, Verdiana Marchianò, Angelo Tricase, Angela Stefanachi, Eleonora Macchia, Blanca Cassano, Luisa Torsi, Xiaoming Zhang, Paolo Bollella","doi":"10.1039/d5sd00053j","DOIUrl":null,"url":null,"abstract":"<p><p>The reproducibility of enzyme-based biosensors remains a critical challenge, particularly in clinical and wearable applications. Here, we present a novel one-pot polydopamine (PDA)-assisted immobilization strategy for pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH) on graphite electrodes to address the limitations of conventional layer-by-layer (LbL) methods. The (PQQ-GDH/PDA)<sub>OPA</sub>/G platform demonstrated a uniform and nanostructured enzyme-polymer matrix, confirmed by SEM and spectroscopic characterization, resulting in enhanced surface coverage and enzyme stabilization. Electrochemical analyses revealed an onset potential of +0.19 ± 0.01 V and a maximum current of 0.87 ± 0.08 μA in the presence of glucose. Amperometric calibration yielded a linear range of 0.4-1.2 mM, a sensitivity of 0.47 μA mM<sup>-1</sup>, and a low detection limit of 26 ± 2 μM. Michaelis-Menten kinetic analysis provided an <i>I</i> <sub>max</sub> of 1.13 ± 0.07 μA and a <i>K</i> <sup>app</sup> <sub>M</sub> of 3.11 ± 0.59 mM. Reproducibility was excellent, with relative standard deviations below 8% for all key parameters. The biosensor retained full functionality under physiological conditions (pH 7.2, 37 °C) and exhibited high selectivity against common interferents, including dopamine, uric acid, and ascorbic acid, with signal variations below 5%. Remarkably, the sensor maintained stable responses in artificial serum for over 67 days, confirming its long-term operational stability. These findings highlight the one-pot PDA-based approach as a scalable, reproducible, and biocompatible platform for next-generation glucose biosensors suitable for real-world biomedical monitoring.</p>","PeriodicalId":74786,"journal":{"name":"Sensors & diagnostics","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12231961/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors & diagnostics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d5sd00053j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The reproducibility of enzyme-based biosensors remains a critical challenge, particularly in clinical and wearable applications. Here, we present a novel one-pot polydopamine (PDA)-assisted immobilization strategy for pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH) on graphite electrodes to address the limitations of conventional layer-by-layer (LbL) methods. The (PQQ-GDH/PDA)OPA/G platform demonstrated a uniform and nanostructured enzyme-polymer matrix, confirmed by SEM and spectroscopic characterization, resulting in enhanced surface coverage and enzyme stabilization. Electrochemical analyses revealed an onset potential of +0.19 ± 0.01 V and a maximum current of 0.87 ± 0.08 μA in the presence of glucose. Amperometric calibration yielded a linear range of 0.4-1.2 mM, a sensitivity of 0.47 μA mM-1, and a low detection limit of 26 ± 2 μM. Michaelis-Menten kinetic analysis provided an I max of 1.13 ± 0.07 μA and a K app M of 3.11 ± 0.59 mM. Reproducibility was excellent, with relative standard deviations below 8% for all key parameters. The biosensor retained full functionality under physiological conditions (pH 7.2, 37 °C) and exhibited high selectivity against common interferents, including dopamine, uric acid, and ascorbic acid, with signal variations below 5%. Remarkably, the sensor maintained stable responses in artificial serum for over 67 days, confirming its long-term operational stability. These findings highlight the one-pot PDA-based approach as a scalable, reproducible, and biocompatible platform for next-generation glucose biosensors suitable for real-world biomedical monitoring.

一锅组装吡咯喹啉醌葡萄糖脱氢酶与聚多巴胺,以克服逐层电极开发的可重复性问题。
酶基生物传感器的可重复性仍然是一个关键的挑战,特别是在临床和可穿戴应用中。在这里,我们提出了一种新的一锅聚多巴胺(PDA)辅助固定化吡咯喹啉醌依赖性葡萄糖脱氢酶(PQQ-GDH)在石墨电极上的策略,以解决传统分层(LbL)方法的局限性。(pq - gdh /PDA)OPA/G平台展示了一种均匀的纳米结构的酶-聚合物基质,经SEM和光谱表征证实,增强了表面覆盖率和酶稳定性。电化学分析表明,在葡萄糖存在下,起始电位为+0.19±0.01 V,最大电流为0.87±0.08 μA。安培校准的线性范围为0.4 ~ 1.2 mM,灵敏度为0.47 μA mM-1,低检出限为26±2 μM。Michaelis-Menten动力学分析的I max为1.13±0.07 μA, K app M为3.11±0.59 mM,重现性好,各关键参数的相对标准偏差均在8%以下。该生物传感器在生理条件下(pH 7.2, 37°C)保持了完整的功能,并对常见的干扰物(包括多巴胺,尿酸和抗坏血酸)表现出高选择性,信号变化低于5%。值得注意的是,传感器在人工血清中保持了超过67天的稳定反应,证实了其长期运行的稳定性。这些发现强调了一罐pda为基础的方法是一个可扩展的,可重复的,生物相容性平台的下一代葡萄糖生物传感器适用于现实世界的生物医学监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信