{"title":"Saving KLF2/4 from γ-protocadherin to reduce vascular inflammation and atherosclerosis","authors":"Christian Park, Kyung In Baek, Hanjoong Jo","doi":"10.1038/s44161-024-00523-y","DOIUrl":"10.1038/s44161-024-00523-y","url":null,"abstract":"Atherosclerosis occurs in arterial regions exposed to disturbed flow, where endothelial expression of flow-sensitive, atheroprotective genes such as KLF2 and KLF4 is reduced. Protecting the endothelial expression of KLF2 and KLF4 from inhibitory factors could be a therapeutic approach to prevent vascular inflammation and atherosclerosis.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"3 9","pages":"1021-1023"},"PeriodicalIF":9.4,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142134665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Divyesh Joshi, Brian G. Coon, Raja Chakraborty, Hanqiang Deng, Ziyu Yang, Muhammad Usman Babar, Pablo Fernandez-Tussy, Emily Meredith, John Attanasio, Nikhil Joshi, James G. Traylor Jr., Anthony Wayne Orr, Carlos Fernandez-Hernando, Stephania Libreros, Martin A. Schwartz
{"title":"Endothelial γ-protocadherins inhibit KLF2 and KLF4 to promote atherosclerosis","authors":"Divyesh Joshi, Brian G. Coon, Raja Chakraborty, Hanqiang Deng, Ziyu Yang, Muhammad Usman Babar, Pablo Fernandez-Tussy, Emily Meredith, John Attanasio, Nikhil Joshi, James G. Traylor Jr., Anthony Wayne Orr, Carlos Fernandez-Hernando, Stephania Libreros, Martin A. Schwartz","doi":"10.1038/s44161-024-00522-z","DOIUrl":"10.1038/s44161-024-00522-z","url":null,"abstract":"Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of mortality worldwide. Laminar shear stress from blood flow, sensed by vascular endothelial cells, protects from ASCVD by upregulating the transcription factors KLF2 and KLF4, which induces an anti-inflammatory program that promotes vascular resilience. Here we identify clustered γ-protocadherins as therapeutically targetable, potent KLF2 and KLF4 suppressors whose upregulation contributes to ASCVD. Mechanistic studies show that γ-protocadherin cleavage results in translocation of the conserved intracellular domain to the nucleus where it physically associates with and suppresses signaling by the Notch intracellular domain. γ-Protocadherins are elevated in human ASCVD endothelium; their genetic deletion or antibody blockade protects from ASCVD in mice without detectably compromising host defense against bacterial or viral infection. These results elucidate a fundamental mechanism of vascular inflammation and reveal a method to target the endothelium rather than the immune system as a protective strategy in ASCVD. Joshi et al. show that γ-protocadherins suppress the anti-inflammatory KLF2 and KLF4 pathway and that targeting them is a viable therapeutic strategy to protect against atherosclerosis.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"3 9","pages":"1035-1048"},"PeriodicalIF":9.4,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44161-024-00522-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142134664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"α-Ketoglutarate promotes cardiomyocyte proliferation and heart regeneration after myocardial infarction","authors":"Yu Shi, Miao Tian, Xiaofang Zhao, Luxun Tang, Feng Wang, Hao Wu, Qiao Liao, Hongmei Ren, Wenbin Fu, Shuo Zheng, Pedro A. Jose, Liangpeng Li, Chunyu Zeng","doi":"10.1038/s44161-024-00531-y","DOIUrl":"10.1038/s44161-024-00531-y","url":null,"abstract":"The neonatal mammalian heart can regenerate following injury through cardiomyocyte proliferation but loses this potential by postnatal day 7. Stimulating adult cardiomyocytes to reenter the cell cycle remains unclear. Here we show that cardiomyocyte proliferation depends on its metabolic state. Given the connection between the tricarboxylic acid cycle and cell proliferation, we analyzed these metabolites in mouse hearts from postnatal day 0.5 to day 7 and found that α-ketoglutarate ranked highest among the decreased metabolites. Injection of α-ketoglutarate extended the window of cardiomyocyte proliferation during heart development and promoted heart regeneration after myocardial infarction by inducing adult cardiomyocyte proliferation. This was confirmed in Ogdh-siRNA-treated mice with increased α-ketoglutarate levels. Mechanistically, α-ketoglutarate decreases H3K27me3 deposition at the promoters of cell cycle genes in cardiomyocytes. Thus, α-ketoglutarate promotes cardiomyocyte proliferation through JMJD3-dependent demethylation, offering a potential approach for treating myocardial infarction. Yu Shi et al. show that the citric acid cycle metabolite α-ketoglutarate promotes cardiomyocyte proliferation during heart development and promotes heart regeneration after myocardial infarction.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"3 9","pages":"1083-1097"},"PeriodicalIF":9.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142121286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Engineered human heart tissue reveals pathogenicity of autoantibodies in systemic lupus erythematosus","authors":"Madeleine W. Cunningham","doi":"10.1038/s44161-024-00535-8","DOIUrl":"10.1038/s44161-024-00535-8","url":null,"abstract":"IgG autoantibodies from patients with systemic lupus erythematosus (SLE) and systolic dysfunction directly affect engineered human heart tissue, altering cellular composition, respiration and calcium handling. Four pathogenic autoantibodies that may target cardiomyocyte function provide insights into myocardial injury in SLE.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"3 9","pages":"1028-1030"},"PeriodicalIF":9.4,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142115647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The effect of cardiovascular medicine on sports doping","authors":"Gerburg Schwaerzer","doi":"10.1038/s44161-024-00536-7","DOIUrl":"10.1038/s44161-024-00536-7","url":null,"abstract":"This summer, we have witnessed several high-level sports events, the UEFA European Football Championship, the Tour de France/Tour de France Femmes and the Olympic Games. As we admired these impressive athletic performances, the issue of performance-enhancing drugs (PEDs) inevitably resurfaced. Although PEDs are sometimes used to treat cardiovascular diseases, they can also cause severe side effects such as atherosclerosis, thrombosis, arrhythmias and sudden cardiac death. Here we discuss the use of PEDs, their direct effects and side effects on the cardiovascular system with Aaron Baggish, a professor of medicine at the University of Lausanne’s Institut des Sciences du Sport (ISSUL), chief of sports cardiology at the Centre Hospitalier Universitaire Vaudois (CHUV), and founder and emeritus director of the Massachusetts General Hospital Cardiovascular Performance Program (CPP) affiliated with Harvard Medical School. Baggish has been working with athletes for over 10 years and is a consultant for numerous sports and sports-related organizations including the World Anti-Doping Agency (WADA).","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"3 9","pages":"1017-1019"},"PeriodicalIF":9.4,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142115649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lucie Boulgakoff, Rachel Sturny, Veronika Olejnickova, David Sedmera, Robert G. Kelly, Lucile Miquerol
{"title":"Participation of ventricular trabeculae in neonatal cardiac regeneration leads to ectopic recruitment of Purkinje-like cells","authors":"Lucie Boulgakoff, Rachel Sturny, Veronika Olejnickova, David Sedmera, Robert G. Kelly, Lucile Miquerol","doi":"10.1038/s44161-024-00530-z","DOIUrl":"10.1038/s44161-024-00530-z","url":null,"abstract":"Unlike adult mammals, newborn mice can regenerate a functional heart after myocardial infarction; however, the precise origin of the newly formed cardiomyocytes and whether the distal part of the conduction system (the Purkinje fiber (PF) network) is properly formed in regenerated hearts remains unclear. PFs, as well as subendocardial contractile cardiomyocytes, are derived from trabeculae, transient myocardial ridges on the inner ventricular surface. Here, using connexin 40-driven genetic tracing, we uncover a substantial participation of the trabecular lineage in myocardial regeneration through dedifferentiation and proliferation. Concomitantly, regeneration disrupted PF network maturation, resulting in permanent PF hyperplasia and impaired ventricular conduction. Proliferation assays, genetic impairment of PF recruitment, lineage tracing and clonal analysis revealed that PF network hyperplasia results from excessive recruitment of PFs due to increased trabecular fate plasticity. These data indicate that PF network hyperplasia is a consequence of trabeculae participation in myocardial regeneration. Boulgakoff et al. show that during cardiac regeneration, ventricular trabeculae participate in the repair of the contractile myocardium resulting in an excessive production of immature Purkinje fibers forming a hyperplastic PF network and altered ventricular conduction.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"3 9","pages":"1140-1157"},"PeriodicalIF":9.4,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142094273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cardioprotective effects of glatiramer acetate after ischemic myocardial injury","authors":"Ulrich Hofmann, Stefan Frantz","doi":"10.1038/s44161-024-00517-w","DOIUrl":"10.1038/s44161-024-00517-w","url":null,"abstract":"Glatiramer acetate, a drug with an established history of treating multiple sclerosis in clinical practice, improves cardiac function in rodent models of myocardial infarction and ischemic heart failure.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"3 9","pages":"1024-1025"},"PeriodicalIF":9.4,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142231151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gal Aviel, Jacob Elkahal, Kfir Baruch Umansky, Hanna Bueno-Levy, Zachary Petrover, Yulia Kotlovski, Daria Lendengolts, David Kain, Tali Shalit, Lingling Zhang, Shoval Miyara, Matthias P. Kramer, Yifat Merbl, Stav Kozlovski, Ronen Alon, Rina Aharoni, Ruth Arnon, David Mishali, Uriel Katz, Dean Nachman, Rabea Asleh, Offer Amir, Eldad Tzahor, Rachel Sarig
{"title":"Repurposing of glatiramer acetate to treat cardiac ischemia in rodent models","authors":"Gal Aviel, Jacob Elkahal, Kfir Baruch Umansky, Hanna Bueno-Levy, Zachary Petrover, Yulia Kotlovski, Daria Lendengolts, David Kain, Tali Shalit, Lingling Zhang, Shoval Miyara, Matthias P. Kramer, Yifat Merbl, Stav Kozlovski, Ronen Alon, Rina Aharoni, Ruth Arnon, David Mishali, Uriel Katz, Dean Nachman, Rabea Asleh, Offer Amir, Eldad Tzahor, Rachel Sarig","doi":"10.1038/s44161-024-00524-x","DOIUrl":"10.1038/s44161-024-00524-x","url":null,"abstract":"Myocardial injury may ultimately lead to adverse ventricular remodeling and development of heart failure (HF), which is a major cause of morbidity and mortality worldwide. Given the slow pace and substantial costs of developing new therapeutics, drug repurposing is an attractive alternative. Studies of many organs, including the heart, highlight the importance of the immune system in modulating injury and repair outcomes. Glatiramer acetate (GA) is an immunomodulatory drug prescribed for patients with multiple sclerosis. Here, we report that short-term GA treatment improves cardiac function and reduces scar area in a mouse model of acute myocardial infarction and a rat model of ischemic HF. We provide mechanistic evidence indicating that, in addition to its immunomodulatory functions, GA exerts beneficial pleiotropic effects, including cardiomyocyte protection and enhanced angiogenesis. Overall, these findings highlight the potential repurposing of GA as a future therapy for a myriad of heart diseases. Sarig and Tzahor et al. show that the multiple sclerosis drug glatiramer acetate improves cardiac function and reduces scar area in rodent models of acute myocardial infarction and ischemic heart failure.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"3 9","pages":"1049-1066"},"PeriodicalIF":9.4,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142115648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bastian Stoffers, Hanna Wolf, Lucas Bacmeister, Svenja Kupsch, Tamara Vico, Timoteo Marchini, Maria A. Brehm, Isabell Yan, P. Moritz Becher, Armin Ardeshirdavani, Felicitas Escher, Sangwon V. Kim, Karin Klingel, Paulus Kirchhof, Stefan Blankenberg, Tanja Zeller, Dennis Wolf, Ingo Hilgendorf, Dirk Westermann, Diana Lindner
{"title":"Author Correction: GPR15-mediated T cell recruitment during acute viral myocarditis facilitated virus elimination and improved outcome","authors":"Bastian Stoffers, Hanna Wolf, Lucas Bacmeister, Svenja Kupsch, Tamara Vico, Timoteo Marchini, Maria A. Brehm, Isabell Yan, P. Moritz Becher, Armin Ardeshirdavani, Felicitas Escher, Sangwon V. Kim, Karin Klingel, Paulus Kirchhof, Stefan Blankenberg, Tanja Zeller, Dennis Wolf, Ingo Hilgendorf, Dirk Westermann, Diana Lindner","doi":"10.1038/s44161-024-00540-x","DOIUrl":"10.1038/s44161-024-00540-x","url":null,"abstract":"","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"3 9","pages":"1177-1177"},"PeriodicalIF":9.4,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44161-024-00540-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142231167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Epicardial adipose tissue resident memory T cells in atrial fibrillation","authors":"Federica Ruggeri, Vasiliki Papadopoulou, Marinos Kallikourdis","doi":"10.1038/s44161-024-00528-7","DOIUrl":"10.1038/s44161-024-00528-7","url":null,"abstract":"A resident memory T cell subpopulation that infiltrates epicardial adipose tissue is expanded in patients with atrial fibrillation and may affect cardiomyocyte physiology.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"3 9","pages":"1026-1027"},"PeriodicalIF":9.4,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142231148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}