{"title":"Finding the right balance of RyR2 phosphorylation for arrhythmia prevention","authors":"Daniel J. Blackwell, Björn C. Knollmann","doi":"10.1038/s44161-025-00701-6","DOIUrl":null,"url":null,"abstract":"Ryanodine receptor (RyR2) phosphorylation was thought to regulate cardiac calcium handling and contractility. Research now shows that preventing RyR2 phosphorylation has no effect on heart rate or contractile function in response to catecholamines and instead drives an electrogenic process that can trigger lethal arrhythmia.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"4 8","pages":"962-963"},"PeriodicalIF":10.8000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cardiovascular research","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44161-025-00701-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Ryanodine receptor (RyR2) phosphorylation was thought to regulate cardiac calcium handling and contractility. Research now shows that preventing RyR2 phosphorylation has no effect on heart rate or contractile function in response to catecholamines and instead drives an electrogenic process that can trigger lethal arrhythmia.