Identification of hypertrophic cardiomyopathy on electrocardiographic images with deep learning.

IF 10.8 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Veer Sangha, Lovedeep Singh Dhingra, Arya Aminorroaya, Philip M Croon, Nikhil V Sikand, Sounok Sen, Matthew W Martinez, Martin S Maron, Harlan M Krumholz, Folkert W Asselbergs, Evangelos K Oikonomou, Rohan Khera
{"title":"Identification of hypertrophic cardiomyopathy on electrocardiographic images with deep learning.","authors":"Veer Sangha, Lovedeep Singh Dhingra, Arya Aminorroaya, Philip M Croon, Nikhil V Sikand, Sounok Sen, Matthew W Martinez, Martin S Maron, Harlan M Krumholz, Folkert W Asselbergs, Evangelos K Oikonomou, Rohan Khera","doi":"10.1038/s44161-025-00685-3","DOIUrl":null,"url":null,"abstract":"<p><p>Hypertrophic cardiomyopathy (HCM) is frequently underdiagnosed. Although deep learning (DL) models using raw electrocardiographic (ECG) voltage data can enhance detection, their use at the point of care is limited. Here we report the development and validation of a DL model that detects HCM from images of 12-lead ECGs across layouts. The model was developed using 124,553 ECGs from 66,987 individuals at the Yale New Haven Hospital (YNHH), with HCM features determined by concurrent imaging (cardiac magnetic resonance (CMR) or echocardiography). External validation included ECG images from MIMIC-IV, the Amsterdam University Medical Center (AUMC) and the UK Biobank (UKB), where HCM was defined by CMR (YNHH, MIMIC-IV and AUMC) and diagnosis codes (UKB). The model demonstrated robust performance across image formats and sites (areas under the receiver operating characteristic curve (AUROCs): 0.95 internal testing; 0.94 MIMIC-IV; 0.92 AUMC; 0.91 UKB). Discriminative features localized to anterior/lateral leads (V4 and V5) regardless of layout. This approach enables scalable, image-based screening for HCM across clinical settings.</p>","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":" ","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cardiovascular research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44161-025-00685-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Hypertrophic cardiomyopathy (HCM) is frequently underdiagnosed. Although deep learning (DL) models using raw electrocardiographic (ECG) voltage data can enhance detection, their use at the point of care is limited. Here we report the development and validation of a DL model that detects HCM from images of 12-lead ECGs across layouts. The model was developed using 124,553 ECGs from 66,987 individuals at the Yale New Haven Hospital (YNHH), with HCM features determined by concurrent imaging (cardiac magnetic resonance (CMR) or echocardiography). External validation included ECG images from MIMIC-IV, the Amsterdam University Medical Center (AUMC) and the UK Biobank (UKB), where HCM was defined by CMR (YNHH, MIMIC-IV and AUMC) and diagnosis codes (UKB). The model demonstrated robust performance across image formats and sites (areas under the receiver operating characteristic curve (AUROCs): 0.95 internal testing; 0.94 MIMIC-IV; 0.92 AUMC; 0.91 UKB). Discriminative features localized to anterior/lateral leads (V4 and V5) regardless of layout. This approach enables scalable, image-based screening for HCM across clinical settings.

基于深度学习的心电图像肥厚性心肌病识别。
肥厚性心肌病(HCM)经常被误诊。虽然使用原始心电图(ECG)电压数据的深度学习(DL)模型可以增强检测,但它们在护理点的使用是有限的。在这里,我们报告了一种DL模型的开发和验证,该模型可以从跨布局的12导联心电图图像中检测HCM。该模型是利用耶鲁大学纽黑文医院(YNHH) 66,987名患者的124,553张心电图开发的,HCM特征通过并发成像(心脏磁共振(CMR)或超声心动图)确定。外部验证包括来自MIMIC-IV、阿姆斯特丹大学医学中心(AUMC)和英国生物银行(UKB)的心电图图像,其中HCM由CMR (YNHH、MIMIC-IV和AUMC)和诊断代码(UKB)定义。该模型在图像格式和站点(接收者工作特征曲线下面积(auroc): 0.95)上表现出稳健的性能;0.94 MIMIC-IV;0.92 AUMC;0.91 UKB)。鉴别特征定位于前/外侧导联(V4和V5),与布局无关。这种方法可以在临床环境中对HCM进行可扩展的基于图像的筛查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信