{"title":"Segmented ring-mesh model of glycosaminoglycan chains based on the 3D analysis of normal individual and Musculocontractural Ehlers-Danlos syndrome skin using scanning transmission electron microscopy.","authors":"Naoki Takahashi, Takuya Hirose, Kiyokazu Kametani, Tomohito Iwasaki, Yasutada Imamura, Tomoki Kosho, Takafumi Watanabe","doi":"10.1093/jmicro/dfaf012","DOIUrl":"https://doi.org/10.1093/jmicro/dfaf012","url":null,"abstract":"<p><p>Collagen fibrils in the dermis are bundled by glycosaminoglycan (GAG) chains of decorin, which contribute to its strength. The three-dimensional structure of collagen fibrils and GAG chains has been discussed on the basis of observations and experiments. This study uses scanning transmission electron microscope (STEM) tomography with high Z-axis resolution to analyze the three-dimensional structure of GAG chains in the dermis from a healthy individual and a patient with Musculocontractural Ehlers-Danlos syndrome caused by pathogenic variants in CHST14 (mcEDS-CHST14). This observation revealed that the dermis from a healthy individual featured multiple GAG chains that wrapped around collagen fibrils and formed incomplete ring structures. However, in the dermis from a patient with mcEDS-CHST14, GAG chains were linear and did not form rings. Based on the relationship between collagen fibrils and GAG chains, we suggest the three-dimensional structure of normal GAG chains in a new model named the \"segmented ring-mesh model.\" The interactions between collagen fibrils and GAG chains in this model also apply to the dermis of mcEDS-CHST14 patients, in which the GAG chain composition changes to become CS-rich and more linear. This change leads to an increased inter-fibrillar space, which inhibits the dense packing of collagen fibrils. These findings suggest that this phenomenon contributes to the skin fragility observed in mcEDS-CHST14 patients. Our study suggests the \"segmented ring-mesh model\" of GAG chains is essential for the dense packing of collagen fibrils in normal dermis. STEM tomography is highly effective in analyzing the three-dimensional structure of collagen fibrils and GAG chains.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143442843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unraveling the Neural Code: Analysis of Large-Scale Two-Photon Microscopy Data.","authors":"Yoshihito Saito, Yuma Osako, Masanori Murayama","doi":"10.1093/jmicro/dfaf010","DOIUrl":"https://doi.org/10.1093/jmicro/dfaf010","url":null,"abstract":"<p><p>The brain is an intricate neuronal network that orchestrates our thoughts, emotions, and actions through dynamic interactions between neurons. If we could record the activity of all neurons simultaneously in detail, it could revolutionize our understanding of brain function and lead to breakthroughs in treating neurological diseases. Recent technological innovations, particularly in large field-of-view two-photon microscopes, have made it possible to record the activity of tens of thousands of neurons simultaneously. However, the size and complexity of the datasets present significant challenges in extracting interpretable information. Conventional analysis methods are often insufficient, necessitating the development of new theoretical frameworks and computational efficiencies. In this review, we describe the characteristics of the data obtained from advanced imaging techniques and discuss analytical methods to facilitate mutual understanding between experimentalists and theorists. This interdisciplinary approach is crucial for effectively managing and interpreting large-scale neural activity datasets, ultimately advancing our understanding of brain function.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143426774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kana Okuma, Junji Yamaguchi, Soichiro Kakuta, Koichiro Ichimura
{"title":"Disodium hydrogen phosphate facilitates the gold enhancement reaction of nanogold in the pre-embedding immunoelectron microscopy.","authors":"Kana Okuma, Junji Yamaguchi, Soichiro Kakuta, Koichiro Ichimura","doi":"10.1093/jmicro/dfaf009","DOIUrl":"https://doi.org/10.1093/jmicro/dfaf009","url":null,"abstract":"<p><p>Immunoelectron microscopy is a technique for analyzing molecular localization at the ultrastructural level. In the pre-embedding immunoelectron microscopy, samples are immunolabeled with extremely small gold particles. Gold enhancement then enlarges the gold particles to an easily visible size. During the examination of the optimal conditions, we found that phosphate buffer accelerates the enhancement reaction. Furthermore, disodium hydrogen phosphate was identified as responsible for this effect. Disodium hydrogen phosphate enabled the gold labeling of deep regions within thick tissue samples. In conclusion, our method is useful for increasing the sensitivity, especially in the deeper region of the sample.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143070100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jun Uzuhashi, Yuanzhao Yao, Tadakatsu Ohkubo, Takashi Sekiguchi
{"title":"Experimental investigation and simulation of SEM image intensity behaviors for developing thickness-controlled S/TEM lamella preparation via FIB-SEM.","authors":"Jun Uzuhashi, Yuanzhao Yao, Tadakatsu Ohkubo, Takashi Sekiguchi","doi":"10.1093/jmicro/dfaf006","DOIUrl":"https://doi.org/10.1093/jmicro/dfaf006","url":null,"abstract":"<p><p>High-quality thin lamellae are essential for state-of-the-art scanning transmission electron microscopy (S/TEM) analyses. While the preparation of S/TEM lamellae using focused ion beam (FIB-) scanning electron microscopy (SEM) has been established since the early 21st century, two critical factors have only recently been addressed: precise control over lamella thickness and a systematic understanding of FIB-induced damage. This study conducts an experimental investigation and simulation to explore how the intensities of backscattered and secondary electrons (BSEs and SEs, respectively) depend on lamellae thickness for semiconductor (Si), insulator (Al2O3), and metallic (stainless-steel) materials. The BSE intensity shows a simple linear relationship with the lamella thickness for all materials below a certain thickness, whereas the relationship between the SE intensity and thickness is more complex. In conclusion, the BSE intensity is a reliable indicator for accurately determining lamella thickness across various materials during FIB thinning processing, while the SE intensity lacks consistency due to material and detector variability. This insight enables the integration of real-time thickness control into S/TEM lamella preparation, significantly enhancing lamella quality and reproducibility. These findings pave the way for more efficient, automated processes in high-quality S/TEM analysis, making the preparation method more reliable for a range of applications.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143070101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yasushi Azuma, Kazuhiro Kumagai, Naoki Kunishima, Koichiro Ito
{"title":"Magnification calibration of X-ray 3D microscopy using micro-line structures.","authors":"Yasushi Azuma, Kazuhiro Kumagai, Naoki Kunishima, Koichiro Ito","doi":"10.1093/jmicro/dfae045","DOIUrl":"10.1093/jmicro/dfae045","url":null,"abstract":"<p><p>X-ray microscopy using computed tomography is an excellent 3D imaging instrument. Three-dimensional X-ray microscopy (3DXRM) is a nondestructive imaging technique used to inspect internal and external structures in units of submicrometers or less. The 3DXRM, although attractive, is mostly used as an observation instrument and is limited as a measurement system in quantitative evaluation and quality control. Calibration is required for use in measurement systems such as coordinate measurement systems, and specific standard samples and evaluation procedures are needed. The certified values of the standard samples must ideally be traceable to the International System of Units (SI). In the 3DXRM measurement system, line structures (LSs) are fabricated as prototype standard samples to conduct magnification calibration. In this study, we evaluated the LS intervals using calibrated cross-sectional scanning electron microscopy (SEM). A comparison of the evaluation results between SEM and 3DXRM for the LS intervals provided the magnification calibration factor for 3DXRM and validated the LSs, whereby the interval methods and feasibility of constructing an SI traceability system were evaluated using the calibrated SEM. Consequently, a magnification calibration factor of 1.01 was obtained for 3DXRM based on the intervals of the LSs evaluated by SEM. A possible route for realizing SI-traceable magnification calibration of 3DXRM has been presented.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"48-56"},"PeriodicalIF":0.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142309284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Precise measurement of spatial coherence and axial brightness based on the Wigner function reconstruction in transmission electron microscopes with field emission guns and a thermionic emission gun.","authors":"Shuhei Hatanaka, Jun Yamasaki","doi":"10.1093/jmicro/dfae040","DOIUrl":"10.1093/jmicro/dfae040","url":null,"abstract":"<p><p>The spatial coherence and the axial brightness of a cold field emission gun, a Schottky field emission gun and a lanthanum hexaboride thermionic gun are precisely measured. By analyzing the Airy pattern from a selected area aperture, various parameters including the spatial coherence length are determined. Using the determined coherence length, the axial brightness of the field emission guns is estimated using the equation which we previously derived based on the discussion of the Wigner function of an electron beam. We also make some extensions in the method to be applicable to the measurements of the thermionic gun, which has anisotropic intensity distribution in most cases unlike the field emission guns. Not only conventional average brightness but also the axial brightness measured for the three kinds of emitters are compared accurately and precisely without being influenced by the measurement conditions.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"20-27"},"PeriodicalIF":0.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142115645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simultaneous observation of multiple interferograms with Mach-Zehnder type electron interferometer on a 1.2-MV field-emission transmission electron microscope.","authors":"Tetsuya Akashi, Yoshio Takahashi, Ken Harada","doi":"10.1093/jmicro/dfae030","DOIUrl":"10.1093/jmicro/dfae030","url":null,"abstract":"<p><p>We developed a Mach-Zehnder type electron interferometer (MZ-EI) that enables simultaneous observation of interferograms created at multiple output locations on a 1.2-MV field-emission transmission electron microscope. This MZ-EI is composed of two single-crystal thin films, a lens located between the single-crystal thin films and imaging lenses. By comparing interferograms created by electron waves travelling through different beam paths, we found that the relative phase difference was caused by phase modulation passing through the single crystals and by aberrations and defocus values of the lenses. We also confirmed that the relative phase difference can be controlled using the tilted illumination method.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"63-70"},"PeriodicalIF":0.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141473294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Total third-degree variation for noise reduction in atomic-resolution STEM images.","authors":"Kazuaki Kawahara, Ryo Ishikawa, Shun Sasano, Naoya Shibata, Yuichi Ikuhara","doi":"10.1093/jmicro/dfae031","DOIUrl":"10.1093/jmicro/dfae031","url":null,"abstract":"<p><p>Scanning Transmission Electron Microscopy (STEM) enables direct determination of atomic arrangements in materials and devices. However, materials such as battery components are weak for electron beam irradiation, and low electron doses are required to prevent beam-induced damages. Noise removal is thus essential for precise structural analysis of electron-beam-sensitive materials at atomic resolution. Total square variation (TSV) regularization is an algorithm that exhibits high noise removal performance. However, the use of the TSV regularization term leads to significant image blurring and intensity reduction. To address these problems, we here propose a new approach adopting L2 norm regularization based on higher-order total variation. An atomic-resolution STEM image can be approximated as a set of smooth curves represented by quadratic functions. Since the third-degree derivative of any quadratic function is 0, total third-degree variation (TTDV) is suitable for a regularization term. The application of TTDV for denoising the atomic-resolution STEM image of CaF2 observed along the [001] zone axis is shown, where we can clearly see the Ca and F atomic columns without compromising image quality.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141494463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Near-field electron ptychography using full-field structured illumination.","authors":"Hirokazu Tamaki, Koh Saitoh","doi":"10.1093/jmicro/dfae035","DOIUrl":"10.1093/jmicro/dfae035","url":null,"abstract":"<p><p>A new configuration for near-field ptychography using a full-field illumination with a structured electron beam is proposed. A structured electron beam illuminating the entire field of view is scanned over the specimen, and a series of in-line holograms formed in the near-field region below the specimen are collected. The structured beam is generated by a conductive film with random openings, which ensures high stability and coherence of the beam. Observation in the near-field region reduces the beam concentration that occurs in the far-field region, which contributes to accurate recording of the beam intensity with a finite dynamic range of the detectors. The use of full-field illumination prevents the accumulation of errors caused by concatenating the local structures, which is the method used in conventional reconstruction. Since all holograms are obtained from the entire field of view, they have uniform multiplicity in terms of specimen information within the field of view. This contributes to robust and efficient reconstruction for a large field of view. The proposed method was tested using both simulated and experimental holograms. For the simulated holograms, the reconstruction of the specimen transmission function was achieved with an error less than 1/3485 of the wavelength. The method was further validated using experimental holograms obtained from MgO particles. The reconstructed phase transmission function of the specimen was consistent with the specimen structure and was equivalent to a mean inner potential of 13.53±0.16 V on the MgO particle, which is in close agreement with previously reported values.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"10-19"},"PeriodicalIF":0.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11781274/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141763146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Surface sensitivity of atomic-resolution secondary electron imaging.","authors":"Koh Saitoh, Teppei Oyobe, Keisuke Igarashi, Takeshi Sato, Hiroaki Matsumoto, Hiromi Inada, Takahiko Endo, Yasumitsu Miyata, Rei Usami, Taishi Takenobu","doi":"10.1093/jmicro/dfae041","DOIUrl":"10.1093/jmicro/dfae041","url":null,"abstract":"<p><p>The surface sensitivity of high-resolution secondary electron (SE) imaging is examined using twisted bilayers of MoS2 stacked at an angle of 30°. High-resolution SE images of the twisted bilayer MoS2 show a honeycomb structure composed of Mo and S atoms, elucidating the monolayer structure of MoS2. Simultaneously captured annular dark-field scanning transmission electron microscope images from the same region show the projected structure of the two layers. That is, the SE images from the bilayer MoS2 selectively visualize the surface monolayer. It is noted that the SE yields from the surface monolayer are approximately three times higher than those from the second monolayer, likely attributable to attenuation when SEs emitted from the second layer traverse the surface layer. The surface sensitivity of high-resolution SE imaging is examined using twisted bilayers of MoS2 stacked at an angle of 30°. It was found that the SE images of the MoS2 bilayer visualize the surface monolayer approximately three times more intensely than the second monolayer.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"28-34"},"PeriodicalIF":0.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11781273/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142302784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}