通过原子层沉积 Al2O3 涂层对液体中亚纳米尺度原子力显微镜的针尖进行处理。

Ryohei Kojima, Ayhan Yurtsever, Keisuke Miyazawa, Lucas J Andrew, Mark J MacLachlan, Takeshi Fukuma
{"title":"通过原子层沉积 Al2O3 涂层对液体中亚纳米尺度原子力显微镜的针尖进行处理。","authors":"Ryohei Kojima, Ayhan Yurtsever, Keisuke Miyazawa, Lucas J Andrew, Mark J MacLachlan, Takeshi Fukuma","doi":"10.1093/jmicro/dfaf014","DOIUrl":null,"url":null,"abstract":"<p><p>Atomic force microscopy (AFM) allows direct imaging of atomic- or molecular-scale surface structures in liquid. However, such subnanoscale measurements are often sensitive to the AFM tip properties. To overcome this problem, 30 nm Si-sputter coating was proposed, and its effectiveness in improving stability and reproducibility has been demonstrated in atomic-scale imaging of various materials. However, this method involves tip blunting, enhancing the tip-induced dilation effect. As an alternative method, here we investigate atomic layer deposition (ALD) Al2O3-coating, where the film thickness is atomically well-controlled. Our transmission electron microscopy, contact angle and force curve measurements consistently suggest that as-purchased tips are covered with organic contaminants, and the initial 20 cycles gradually remove them, reducing the tip radius (Rt) and hydrophobicity. Further deposition increases Rt and hydrophilicity and forms an intact Al2O3 film over 50 cycles. We compared 50-cycle ALD-coated tips with 30 nm Si-sputter-coated tips in imaging mica and chitin nanocrystals (NCs). On mica, ALD coating gives slightly less stability and reproducibility in hydration force measurements than the Si sputter coating, yet they are sufficient in atomic-scale imaging. In imaging chitin NCs, ALD-coated tips give a less tip-induced dilation effect while maintaining molecular-scale imaging capability. We also found that 10-cycle-ALD coated tips covered with carbon give a better resolution and reproducibility in observing subnanoscale features at chitin NC surfaces. This result and our experience empirically suggest carbon-coated tips' effectiveness in observing carbon-based materials.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tip treatment for subnanoscale atomic force microscopy in liquid by atomic layer deposition Al2O3 coating.\",\"authors\":\"Ryohei Kojima, Ayhan Yurtsever, Keisuke Miyazawa, Lucas J Andrew, Mark J MacLachlan, Takeshi Fukuma\",\"doi\":\"10.1093/jmicro/dfaf014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Atomic force microscopy (AFM) allows direct imaging of atomic- or molecular-scale surface structures in liquid. However, such subnanoscale measurements are often sensitive to the AFM tip properties. To overcome this problem, 30 nm Si-sputter coating was proposed, and its effectiveness in improving stability and reproducibility has been demonstrated in atomic-scale imaging of various materials. However, this method involves tip blunting, enhancing the tip-induced dilation effect. As an alternative method, here we investigate atomic layer deposition (ALD) Al2O3-coating, where the film thickness is atomically well-controlled. Our transmission electron microscopy, contact angle and force curve measurements consistently suggest that as-purchased tips are covered with organic contaminants, and the initial 20 cycles gradually remove them, reducing the tip radius (Rt) and hydrophobicity. Further deposition increases Rt and hydrophilicity and forms an intact Al2O3 film over 50 cycles. We compared 50-cycle ALD-coated tips with 30 nm Si-sputter-coated tips in imaging mica and chitin nanocrystals (NCs). On mica, ALD coating gives slightly less stability and reproducibility in hydration force measurements than the Si sputter coating, yet they are sufficient in atomic-scale imaging. In imaging chitin NCs, ALD-coated tips give a less tip-induced dilation effect while maintaining molecular-scale imaging capability. We also found that 10-cycle-ALD coated tips covered with carbon give a better resolution and reproducibility in observing subnanoscale features at chitin NC surfaces. This result and our experience empirically suggest carbon-coated tips' effectiveness in observing carbon-based materials.</p>\",\"PeriodicalId\":74193,\"journal\":{\"name\":\"Microscopy (Oxford, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jmicro/dfaf014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jmicro/dfaf014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tip treatment for subnanoscale atomic force microscopy in liquid by atomic layer deposition Al2O3 coating.

Atomic force microscopy (AFM) allows direct imaging of atomic- or molecular-scale surface structures in liquid. However, such subnanoscale measurements are often sensitive to the AFM tip properties. To overcome this problem, 30 nm Si-sputter coating was proposed, and its effectiveness in improving stability and reproducibility has been demonstrated in atomic-scale imaging of various materials. However, this method involves tip blunting, enhancing the tip-induced dilation effect. As an alternative method, here we investigate atomic layer deposition (ALD) Al2O3-coating, where the film thickness is atomically well-controlled. Our transmission electron microscopy, contact angle and force curve measurements consistently suggest that as-purchased tips are covered with organic contaminants, and the initial 20 cycles gradually remove them, reducing the tip radius (Rt) and hydrophobicity. Further deposition increases Rt and hydrophilicity and forms an intact Al2O3 film over 50 cycles. We compared 50-cycle ALD-coated tips with 30 nm Si-sputter-coated tips in imaging mica and chitin nanocrystals (NCs). On mica, ALD coating gives slightly less stability and reproducibility in hydration force measurements than the Si sputter coating, yet they are sufficient in atomic-scale imaging. In imaging chitin NCs, ALD-coated tips give a less tip-induced dilation effect while maintaining molecular-scale imaging capability. We also found that 10-cycle-ALD coated tips covered with carbon give a better resolution and reproducibility in observing subnanoscale features at chitin NC surfaces. This result and our experience empirically suggest carbon-coated tips' effectiveness in observing carbon-based materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信