Plasmonics最新文献

筛选
英文 中文
Studies of Plasmonic Gold (Au) Nanoparticles and Nanofilms Effects on Photoelectron Generation Using B2O3 Glass Substrate 使用 B2O3 玻璃基底研究等离子体金 (Au) 纳米粒子和纳米薄膜对光电子发生的影响
IF 3 4区 物理与天体物理
Plasmonics Pub Date : 2024-08-27 DOI: 10.1007/s11468-024-02485-0
C. Annadurai, M. N. S. Mohamad Ismail, I. Nelson, R. Zakaria
{"title":"Studies of Plasmonic Gold (Au) Nanoparticles and Nanofilms Effects on Photoelectron Generation Using B2O3 Glass Substrate","authors":"C. Annadurai, M. N. S. Mohamad Ismail, I. Nelson, R. Zakaria","doi":"10.1007/s11468-024-02485-0","DOIUrl":"https://doi.org/10.1007/s11468-024-02485-0","url":null,"abstract":"<p>Au nanoparticles are known for substantially modifying their properties depending on the particle size. In the field of radiotherapy, the interaction of low-energy X-rays with high-Z plasmonic nanomaterials endow them with the ability to sensitize radiotherapy. In this study, Au nanofilms and nanoparticles were deposited on a B<sub>2</sub>O<sub>3</sub> glass substrate using an electron beam evaporation technique and bombarded with X-ray at 150 kVp at 1 mA. Thermoluminescent (TL) measurement responses were measured using thermoluminescence dosimetry (TLD). The assembled structure with tunable properties leads to versatile applications in drug delivery and cancer treatment which is beneficial in the health treatment industry.</p>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"15 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanorods-embedded Ring Resonator-based Plasmonic Sensor for Adulteration Detection in Honey Products 基于纳米棒嵌入式环形谐振器的等离子传感器用于蜂蜜产品掺假检测
IF 3 4区 物理与天体物理
Plasmonics Pub Date : 2024-08-27 DOI: 10.1007/s11468-024-02507-x
Rahul Pandey, Kamal Kishor Choure, Rukhsar Zafar, Gausia Qazi, Rajendra Mitharwal, Ghanshyam Singh, Santosh Kumar
{"title":"Nanorods-embedded Ring Resonator-based Plasmonic Sensor for Adulteration Detection in Honey Products","authors":"Rahul Pandey, Kamal Kishor Choure, Rukhsar Zafar, Gausia Qazi, Rajendra Mitharwal, Ghanshyam Singh, Santosh Kumar","doi":"10.1007/s11468-024-02507-x","DOIUrl":"https://doi.org/10.1007/s11468-024-02507-x","url":null,"abstract":"<p>A highly sensitive plasmonic refractive index sensor using a circular ring resonator incorporating silver nanorods as defects are designed and investigated numerically in this article. The numerical investigation focuses on the impact of varying nanorod radius on the sensor’s performance. Results show that two distinct resonant dips in the transmittance spectrum are identified in the near-infrared region, where the second dip has found to have a heightened sensitivity which is particularly advantageous for chemical and biological sensing. The study reveals that increasing the nanorod radius enhances sensor sensitivity and results in a noticeable red shift in dip positions. The sensor attains a peak sensitivity of 2105 nm/RIU at nanorod radius of 22 nm. Furthermore, the proposed sensor is examined for its effectiveness in detecting adulteration in pure honey by sensing the change in resonance wavelength. The observations reveal the sensor’s capability to identify the percentage of externally introduced glucose and fructose in the honey by indicating shifts in resonance wavelength.</p>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"1 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasmonic Sensor Based on S-Shaped Metal-Insulator-Metal Waveguide for the Detection of Water-Soluble Vitamins 用于检测水溶性维生素的基于 S 形金属-绝缘体-金属波导的等离子传感器
IF 3 4区 物理与天体物理
Plasmonics Pub Date : 2024-08-27 DOI: 10.1007/s11468-024-02506-y
Yiping Sun, Yongpeng Ren, Desheng Qu, Fumeng Qin, Chunlei Li
{"title":"Plasmonic Sensor Based on S-Shaped Metal-Insulator-Metal Waveguide for the Detection of Water-Soluble Vitamins","authors":"Yiping Sun, Yongpeng Ren, Desheng Qu, Fumeng Qin, Chunlei Li","doi":"10.1007/s11468-024-02506-y","DOIUrl":"https://doi.org/10.1007/s11468-024-02506-y","url":null,"abstract":"<p>In this study, a compact plasmonic sensor that can generate dual Fano resonances is proposed. The structure is composed of a metal-insulator-metal (MIM) S-shaped waveguide with baffle, an analogous C-shaped resonator (ACR), and a T-shaped resonator with an annular cavity (TRAC). Employing the finite element method (FEM), the optical transmission characteristics of the structure are investigated. The results indicate that the dual Fano resonances arise from different resonators and can be independently tuned by altering the structural parameters of different resonators. Then, through adjusting the refractive index (RI) of the medium within the resonator in the range of 1.3–1.4, the RI sensing properties of the structure are also analyzed. The maximum RI sensitivity (<i>S</i>) and figure of merit (<i>FOM</i>) can be up to 2400 nm/RIU and 95.86 RIU<sup>−1</sup>. Moreover, depending on the independence of the ACR and the TRAC, the sensor has efficient biochemical sensing characteristics and is used to achieve simultaneous determination of water-soluble vitamin B1 and vitamin C. The corresponding concentration sensitivities can be up to 500 nm·ml/g and 224 nm/<i>C</i><sub><i>vc</i></sub>, respectively. Consequently, the structure has significant potential for multifunctional biochemical sensing applications in high-density integrated circuits.</p>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"171 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dispersion Properties in Uniaxial Chiral–Graphene–Uniaxial Chiral Plasmonic Waveguides 单轴手性石墨烯-单轴手性等离子波导中的色散特性
IF 3 4区 物理与天体物理
Plasmonics Pub Date : 2024-08-27 DOI: 10.1007/s11468-024-02462-7
Muhammad Arif, Muhammad Umair, Abdul Ghaffar, Majeed A. S. Alkanhal, Muhammad Amir Ali
{"title":"Dispersion Properties in Uniaxial Chiral–Graphene–Uniaxial Chiral Plasmonic Waveguides","authors":"Muhammad Arif, Muhammad Umair, Abdul Ghaffar, Majeed A. S. Alkanhal, Muhammad Amir Ali","doi":"10.1007/s11468-024-02462-7","DOIUrl":"https://doi.org/10.1007/s11468-024-02462-7","url":null,"abstract":"<p>Plasmonic-based devices attracted considerable attention in the scientific community. However, noble metals provide less tunability to control the electromagnetic (EM) surface wave. Therefore, it is imperative to design dynamically tunable plasmonic devices. In this manuscript, a theoretical model is developed for a graphene-filled waveguide surrounded by uniaxial chiral material (UACM). The complex conductivity of graphene is modeled with the help of the eminent Kubo formula. By applying boundary conditions at the interface, the characteristic equation is derived to investigate the behavior of the normalized propagation constant for the proposed waveguide. The variation in normalized propagation constant under the different parameters of graphene such as chemical potential, relaxation time, number of layers as well as values of chirality for different cases of UACM, i.e., <span>({varepsilon }_{text{t}})</span> &gt; 0, <span>({varepsilon }_{text{z}})</span>&gt; 0, <span>({varepsilon }_{text{t}})</span> &lt; 0, <span>({varepsilon }_{text{z}})</span> &lt; 0 and <span>({varepsilon }_{text{t}})</span> &lt; 0, <span>({varepsilon }_{text{z}}&gt;)</span> 0 is analyzed in the THz frequency range. This study reveals that the normalized propagation constant is very sensitive when both longitudinal and transverse components of permittivity exhibit a negative sign (<span>({varepsilon }_{text{t}})</span> &lt; 0, <span>({varepsilon }_{text{z}})</span> &lt; 0) as compared to the other two cases. It is observed that all three types of UACM have different cutoff frequency ranges. Field profile of UACM such as <span>({E}_{text{z}})</span> and <span>({H}_{text{z}})</span> also studied to confirm the existence of SPP. The present work holds promising potential to offer a new platform graphene-UACM-based plasmonic devices that can be utilized to fabricate waveguides that are dynamically tunable in different THz frequency regions.</p>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"77 4 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solar Thermal Plasmonic Absorber Design Using Graphene-Based Zr-Fe-Ti Materials for Industrial and Household Applications 利用石墨烯基 Zr-Fe-Ti 材料设计太阳能热等离子吸收器,用于工业和家庭应用
IF 3 4区 物理与天体物理
Plasmonics Pub Date : 2024-08-24 DOI: 10.1007/s11468-024-02493-0
Meshari Alsharari, Bo Bo Han, Shobhit K. Patel, Naim Ben Ali, Khaled Aliqab, Ammar Armghan
{"title":"Solar Thermal Plasmonic Absorber Design Using Graphene-Based Zr-Fe-Ti Materials for Industrial and Household Applications","authors":"Meshari Alsharari, Bo Bo Han, Shobhit K. Patel, Naim Ben Ali, Khaled Aliqab, Ammar Armghan","doi":"10.1007/s11468-024-02493-0","DOIUrl":"https://doi.org/10.1007/s11468-024-02493-0","url":null,"abstract":"<p>The need for heating in household and industry is increasing, and this demand can be met with renewable energy using solar thermal absorbers. In the developing design construction, the three appropriate layers have been composed to perform a good solar absorber with different types of materials such as zirconium (Zr) as the resonator design, iron (Fe) used as the substrate section, and the ground titanium (Ti). With the help of a thin graphene layer addition, the current solar absorber improved the radiation observed and can able to extract the ultraviolet (UV) area, visible (V) regime, and also middle-infrared (MI) region. With the exact number of wavelengths and bandwidth expression, more than 97% of the rate has been extracted from 0.2 to 1.1 µm for 900-nm bandwidth, higher than 95% is 600-nm bandwidth between 0.1- and 1.7-µm wavelength, and the whole range of 2800-nm band rate is 90.43% respectively. To study the varied absorption rates in accentuation, the best four wavelengths of 0.2, 0.48, 0.81, and 1.21 µm are selected. To present the current work systematically, we divided the several sections into design and parameters, results and discussions, and conclusion. The current graphene-based absorber of Zr-Fe-Ti can be applied in warm builds, water heating systems, space heating, distillation, drying, and so on. Moreover, a large area of industrial heating process and artificial photosynthesis can be used.</p>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"275 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Ultra-High Sensitivity Surface Plasmon Resonance Refractive Index Sensor Based on Black Phosphorus and Corrugated Silver Layer Structure 基于黑磷和波纹银层结构的增强型超高灵敏度表面等离子体共振折射率传感器
IF 3 4区 物理与天体物理
Plasmonics Pub Date : 2024-08-24 DOI: 10.1007/s11468-024-02503-1
Shaochun Fu, Wentao Jin, Longsheng Liu, Meng Song, Xiaohong Sun
{"title":"Enhanced Ultra-High Sensitivity Surface Plasmon Resonance Refractive Index Sensor Based on Black Phosphorus and Corrugated Silver Layer Structure","authors":"Shaochun Fu, Wentao Jin, Longsheng Liu, Meng Song, Xiaohong Sun","doi":"10.1007/s11468-024-02503-1","DOIUrl":"https://doi.org/10.1007/s11468-024-02503-1","url":null,"abstract":"<p>In this study, we propose an enhanced ultra-high sensitivity prismatic surface plasmon resonance refractive index sensor. The core innovation of the sensor design lies in the integration of the two-dimensional nanomaterial black phosphorus with a corrugated silver layer. This synergistic combination significantly amplifies the interaction between the analyte and the sensing surface, thereby markedly enhancing the sensor’s performance. The influence of the corrugated silver layer and multi-layer black phosphorus on the sensing performance of the proposed sensor was analyzed using numerical simulations. By optimizing structural parameters, including the number of black phosphorus layers and the thickness and period of the corrugated silver layer, the sensor achieved ultra-high sensitivity and an exceptional figure of merit. Within the refractive index range of 1.330 RIU to 1.335 RIU, the sensor exhibited an average sensitivity of 1630°/RIU and a figure of merit of 217.333/RIU. Compared with previously reported prismatic surface plasmon resonance refractive index sensors, the proposed sensor exhibits significantly enhanced angle sensitivity. This sensor is particularly well-suited for detecting biomolecules, including the SARS-CoV-2 virus. It demonstrates substantial potential for applications in high-precision biomedical detection and medical diagnostics.</p>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"34 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasmonic Nanoantenna Array-Based Sensor for Air Parameters Monitoring Purpose 基于等离子纳米天线阵列的空气参数监测传感器
IF 3 4区 物理与天体物理
Plasmonics Pub Date : 2024-08-24 DOI: 10.1007/s11468-024-02504-0
Akash Srivastava, Devendra Chack
{"title":"Plasmonic Nanoantenna Array-Based Sensor for Air Parameters Monitoring Purpose","authors":"Akash Srivastava, Devendra Chack","doi":"10.1007/s11468-024-02504-0","DOIUrl":"https://doi.org/10.1007/s11468-024-02504-0","url":null,"abstract":"<p>Plasmonic nanoantennas have earned significant acclaim for their remarkable ability to couple light from free space into sub-wavelength-sized structures and to enhance the confinement of the electric field. One of the most promising applications of plasmonics is refractive index sensing. To study the optical properties and near-field calculations of the nanoantenna, three-dimensional finite-difference time-domain (FDTD) simulations were conducted using commercially available Maxwell equation solvers, such as Lumerical software. A significant enhancement in electric field intensity and maximum absorption cross-section were observed when an array of plasmonic nanoantennas was used compared to a plasmonic nanoantenna dimer. The proposed device is used to sense changes in major air parameters such as carbon dioxide (CO<sub>2</sub>) gas concentration and atmospheric pressure. Sensitivities as high as 488 nm/RIU and 500 nm/RIU, respectively, were achieved after analyzing both cases.</p>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"41 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Miniaturized Spoof Surface Plasmon Polaritons Based Low Pass Filter with Ultra-Wide-Stop-Band 基于表面等离子体极性子的新型超宽截止带微型欺骗低通滤波器
IF 3 4区 物理与天体物理
Plasmonics Pub Date : 2024-08-23 DOI: 10.1007/s11468-024-02495-y
Brij Kumar Bharti, Amar Nath Yadav
{"title":"A Novel Miniaturized Spoof Surface Plasmon Polaritons Based Low Pass Filter with Ultra-Wide-Stop-Band","authors":"Brij Kumar Bharti, Amar Nath Yadav","doi":"10.1007/s11468-024-02495-y","DOIUrl":"https://doi.org/10.1007/s11468-024-02495-y","url":null,"abstract":"<p>This paper presents a novel compact low pass filter (LPF) based on spoof surface plasmon polaritons (SSPPs) with ultra-wide out-of-band suppression. The design utilizes a single-layer PCB with metal gratings in a tilted slotted stub shape on the top layer. The device size is <span>(0.75lambda _g times 0.12lambda _g)</span> (<span>(lambda _g)</span> denotes the guided wavelength). A lumped equivalent circuit model is also provided. Simulated results demonstrate excellent passband performance and impressive ultra-wide out-of-band suppression. A fabricated prototype confirms simulation findings, showing 1.1 dB insertion loss at the center frequency, reflection coefficient below -10 dB in the passband, and over 30 dB out-of-band rejection beyond 38 GHz. The proposed compact SSPP LPF exhibits significant potential for applications in high-performance, miniaturized integrated circuits within the microwave frequency ranges.</p>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"59 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-Aperture Dual-Core Photonic Crystal Fiber Sensor Based on Surface Plasmon Resonance 基于表面等离子体共振的双孔双芯光子晶体光纤传感器
IF 3 4区 物理与天体物理
Plasmonics Pub Date : 2024-08-22 DOI: 10.1007/s11468-024-02499-8
Hua Wang, Jingya Zhao, Xiaohu Yi, Ji Qi, Shuqing Yan, Pibin Bing
{"title":"Dual-Aperture Dual-Core Photonic Crystal Fiber Sensor Based on Surface Plasmon Resonance","authors":"Hua Wang, Jingya Zhao, Xiaohu Yi, Ji Qi, Shuqing Yan, Pibin Bing","doi":"10.1007/s11468-024-02499-8","DOIUrl":"https://doi.org/10.1007/s11468-024-02499-8","url":null,"abstract":"<p>Surface plasmon resonance sensing, which is based on photonic crystal fiber sensing technology, has a broad spectrum of applications in the detection of pharmaceuticals, environmental pollution, and food safety. This investigation proposes a photonic crystal fiber optic sensor with two cores and two holes to address the issue of limited sensor sensitivity. The high sensitivity of the sensor is optimized by the dual-channel design, which minimizes energy loss and maximizes the coupling efficacy in SPP mode by increasing the contact area of the measured liquid. Concurrently, the plasma resonance process generates an increased amount of energy due to the dual-core architecture. Simulation results show that the sensor has a maximum wavelength sensitivity of 21,500 nm/RIU and a maximum theoretical resolution as high as 4.878 × 10<sup>−7</sup> RIU in the refractive index detection range of 1.33–1.43 and thus is expected to be applied in the field of hematology detection.</p>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"5 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-Polarization SPR Sensor of U-Shaped Photonic Crystal Fiber Coated with Au-TiO2 镀金二氧化钛的 U 形光子晶体光纤双偏振 SPR 传感器
IF 3 4区 物理与天体物理
Plasmonics Pub Date : 2024-08-22 DOI: 10.1007/s11468-024-02501-3
Xiaotong Guo, Tian Sang, Guofeng Yang, Yueke Wang
{"title":"Dual-Polarization SPR Sensor of U-Shaped Photonic Crystal Fiber Coated with Au-TiO2","authors":"Xiaotong Guo, Tian Sang, Guofeng Yang, Yueke Wang","doi":"10.1007/s11468-024-02501-3","DOIUrl":"https://doi.org/10.1007/s11468-024-02501-3","url":null,"abstract":"<p>We propose a surface plasmon resonance (SPR) sensor based on the U-shaped photonic crystal fiber (PCF) coated with Au-TiO<sub>2</sub> layers, which can detect the refractive index (RI) of the analyte. We introduce elliptical air holes near the fiber core, which can break the symmetry of PCF structural and lead to a strong birefringence for achieving dual-polarization sensors. Besides, the TiO<sub>2</sub> layer not only enhances the adhesion of Au and quartz but also improves the SPR effect. By using finite element method (FEM) numerical analysis, geometrical parameters are optimized to enhance sensors’ performances, and dual polarization demonstrates superior performance in different detection ranges, expanding the range of analyte detection. Finally, simulation results show that the detection range under the Y-polarization (X-polarization) is 1.20–1.30 (1.36–1.43), with a maximum wavelength sensitivity of 10200 nm/RIU (5900 nm/RIU). This sensor offers broad RI detection range and high sensitivity, promising extensive applications in environmental and medical diagnostics.</p>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"1 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信