A Theoretical Explanation for the Existence of Certain Maxima in the Visible Spectrum Pattern of Wave Scattering from Spherical Metal-Dielectric-Janus Nanoparticles Based on Surface Plasmon Excitation
{"title":"A Theoretical Explanation for the Existence of Certain Maxima in the Visible Spectrum Pattern of Wave Scattering from Spherical Metal-Dielectric-Janus Nanoparticles Based on Surface Plasmon Excitation","authors":"Maryam Dehdari, Bahram Jazi, Fatemeh Khosravi","doi":"10.1007/s11468-024-02447-6","DOIUrl":null,"url":null,"abstract":"<p>In this research, within the visible frequency band region, the scattering phenomenon of plane electromagnetic waves from two-piece nano-spheres, consisting of metal-dielectric (spherical metal-dielectric Janus nanoparticles), will be investigated theoretically. Mie’s theory, which addresses wave scattering from spherical structures, and the point-matching method for solving field equations, are the two main mathematical tools utilized in this work. Simulations have been conducted for objects with several dual combinations of metal-dielectric materials, such as Gold metal paired with dielectrics like Alumina, PVC, Teflon, and Rexolite. This investigation also extends to objects incorporating Silver metal. The diagrams depicting the variations of the scattering cross-section versus wave frequency have been presented. It will be demonstrated that, at certain frequencies, the diagrams of the scattering cross-section exhibit peaks. These peaks indicate the state in which the densities of surface plasmon dipoles at the metal-dielectric boundary have the most significant and optimal response to the presence of an electromagnetic wave. Since the maxima in the scattering cross-section diagram occur at specific frequencies within the visible region, they can be attributed as a reason for the dominant color observed in colloidal solutions containing spherical metal-dielectric Janus nanoparticles.</p>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasmonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11468-024-02447-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this research, within the visible frequency band region, the scattering phenomenon of plane electromagnetic waves from two-piece nano-spheres, consisting of metal-dielectric (spherical metal-dielectric Janus nanoparticles), will be investigated theoretically. Mie’s theory, which addresses wave scattering from spherical structures, and the point-matching method for solving field equations, are the two main mathematical tools utilized in this work. Simulations have been conducted for objects with several dual combinations of metal-dielectric materials, such as Gold metal paired with dielectrics like Alumina, PVC, Teflon, and Rexolite. This investigation also extends to objects incorporating Silver metal. The diagrams depicting the variations of the scattering cross-section versus wave frequency have been presented. It will be demonstrated that, at certain frequencies, the diagrams of the scattering cross-section exhibit peaks. These peaks indicate the state in which the densities of surface plasmon dipoles at the metal-dielectric boundary have the most significant and optimal response to the presence of an electromagnetic wave. Since the maxima in the scattering cross-section diagram occur at specific frequencies within the visible region, they can be attributed as a reason for the dominant color observed in colloidal solutions containing spherical metal-dielectric Janus nanoparticles.
期刊介绍:
Plasmonics is an international forum for the publication of peer-reviewed leading-edge original articles that both advance and report our knowledge base and practice of the interactions of free-metal electrons, Plasmons.
Topics covered include notable advances in the theory, Physics, and applications of surface plasmons in metals, to the rapidly emerging areas of nanotechnology, biophotonics, sensing, biochemistry and medicine. Topics, including the theory, synthesis and optical properties of noble metal nanostructures, patterned surfaces or materials, continuous or grated surfaces, devices, or wires for their multifarious applications are particularly welcome. Typical applications might include but are not limited to, surface enhanced spectroscopic properties, such as Raman scattering or fluorescence, as well developments in techniques such as surface plasmon resonance and near-field scanning optical microscopy.