{"title":"基于表面等离子体极性子的新型超宽截止带微型欺骗低通滤波器","authors":"Brij Kumar Bharti, Amar Nath Yadav","doi":"10.1007/s11468-024-02495-y","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a novel compact low pass filter (LPF) based on spoof surface plasmon polaritons (SSPPs) with ultra-wide out-of-band suppression. The design utilizes a single-layer PCB with metal gratings in a tilted slotted stub shape on the top layer. The device size is <span>\\(0.75\\lambda _g \\times 0.12\\lambda _g\\)</span> (<span>\\(\\lambda _g\\)</span> denotes the guided wavelength). A lumped equivalent circuit model is also provided. Simulated results demonstrate excellent passband performance and impressive ultra-wide out-of-band suppression. A fabricated prototype confirms simulation findings, showing 1.1 dB insertion loss at the center frequency, reflection coefficient below -10 dB in the passband, and over 30 dB out-of-band rejection beyond 38 GHz. The proposed compact SSPP LPF exhibits significant potential for applications in high-performance, miniaturized integrated circuits within the microwave frequency ranges.</p>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"59 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Miniaturized Spoof Surface Plasmon Polaritons Based Low Pass Filter with Ultra-Wide-Stop-Band\",\"authors\":\"Brij Kumar Bharti, Amar Nath Yadav\",\"doi\":\"10.1007/s11468-024-02495-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents a novel compact low pass filter (LPF) based on spoof surface plasmon polaritons (SSPPs) with ultra-wide out-of-band suppression. The design utilizes a single-layer PCB with metal gratings in a tilted slotted stub shape on the top layer. The device size is <span>\\\\(0.75\\\\lambda _g \\\\times 0.12\\\\lambda _g\\\\)</span> (<span>\\\\(\\\\lambda _g\\\\)</span> denotes the guided wavelength). A lumped equivalent circuit model is also provided. Simulated results demonstrate excellent passband performance and impressive ultra-wide out-of-band suppression. A fabricated prototype confirms simulation findings, showing 1.1 dB insertion loss at the center frequency, reflection coefficient below -10 dB in the passband, and over 30 dB out-of-band rejection beyond 38 GHz. The proposed compact SSPP LPF exhibits significant potential for applications in high-performance, miniaturized integrated circuits within the microwave frequency ranges.</p>\",\"PeriodicalId\":736,\"journal\":{\"name\":\"Plasmonics\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasmonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s11468-024-02495-y\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasmonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11468-024-02495-y","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A Novel Miniaturized Spoof Surface Plasmon Polaritons Based Low Pass Filter with Ultra-Wide-Stop-Band
This paper presents a novel compact low pass filter (LPF) based on spoof surface plasmon polaritons (SSPPs) with ultra-wide out-of-band suppression. The design utilizes a single-layer PCB with metal gratings in a tilted slotted stub shape on the top layer. The device size is \(0.75\lambda _g \times 0.12\lambda _g\) (\(\lambda _g\) denotes the guided wavelength). A lumped equivalent circuit model is also provided. Simulated results demonstrate excellent passband performance and impressive ultra-wide out-of-band suppression. A fabricated prototype confirms simulation findings, showing 1.1 dB insertion loss at the center frequency, reflection coefficient below -10 dB in the passband, and over 30 dB out-of-band rejection beyond 38 GHz. The proposed compact SSPP LPF exhibits significant potential for applications in high-performance, miniaturized integrated circuits within the microwave frequency ranges.
期刊介绍:
Plasmonics is an international forum for the publication of peer-reviewed leading-edge original articles that both advance and report our knowledge base and practice of the interactions of free-metal electrons, Plasmons.
Topics covered include notable advances in the theory, Physics, and applications of surface plasmons in metals, to the rapidly emerging areas of nanotechnology, biophotonics, sensing, biochemistry and medicine. Topics, including the theory, synthesis and optical properties of noble metal nanostructures, patterned surfaces or materials, continuous or grated surfaces, devices, or wires for their multifarious applications are particularly welcome. Typical applications might include but are not limited to, surface enhanced spectroscopic properties, such as Raman scattering or fluorescence, as well developments in techniques such as surface plasmon resonance and near-field scanning optical microscopy.