Meshari Alsharari, Bo Bo Han, Shobhit K. Patel, Naim Ben Ali, Khaled Aliqab, Ammar Armghan
{"title":"Solar Thermal Plasmonic Absorber Design Using Graphene-Based Zr-Fe-Ti Materials for Industrial and Household Applications","authors":"Meshari Alsharari, Bo Bo Han, Shobhit K. Patel, Naim Ben Ali, Khaled Aliqab, Ammar Armghan","doi":"10.1007/s11468-024-02493-0","DOIUrl":null,"url":null,"abstract":"<p>The need for heating in household and industry is increasing, and this demand can be met with renewable energy using solar thermal absorbers. In the developing design construction, the three appropriate layers have been composed to perform a good solar absorber with different types of materials such as zirconium (Zr) as the resonator design, iron (Fe) used as the substrate section, and the ground titanium (Ti). With the help of a thin graphene layer addition, the current solar absorber improved the radiation observed and can able to extract the ultraviolet (UV) area, visible (V) regime, and also middle-infrared (MI) region. With the exact number of wavelengths and bandwidth expression, more than 97% of the rate has been extracted from 0.2 to 1.1 µm for 900-nm bandwidth, higher than 95% is 600-nm bandwidth between 0.1- and 1.7-µm wavelength, and the whole range of 2800-nm band rate is 90.43% respectively. To study the varied absorption rates in accentuation, the best four wavelengths of 0.2, 0.48, 0.81, and 1.21 µm are selected. To present the current work systematically, we divided the several sections into design and parameters, results and discussions, and conclusion. The current graphene-based absorber of Zr-Fe-Ti can be applied in warm builds, water heating systems, space heating, distillation, drying, and so on. Moreover, a large area of industrial heating process and artificial photosynthesis can be used.</p>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"275 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasmonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11468-024-02493-0","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The need for heating in household and industry is increasing, and this demand can be met with renewable energy using solar thermal absorbers. In the developing design construction, the three appropriate layers have been composed to perform a good solar absorber with different types of materials such as zirconium (Zr) as the resonator design, iron (Fe) used as the substrate section, and the ground titanium (Ti). With the help of a thin graphene layer addition, the current solar absorber improved the radiation observed and can able to extract the ultraviolet (UV) area, visible (V) regime, and also middle-infrared (MI) region. With the exact number of wavelengths and bandwidth expression, more than 97% of the rate has been extracted from 0.2 to 1.1 µm for 900-nm bandwidth, higher than 95% is 600-nm bandwidth between 0.1- and 1.7-µm wavelength, and the whole range of 2800-nm band rate is 90.43% respectively. To study the varied absorption rates in accentuation, the best four wavelengths of 0.2, 0.48, 0.81, and 1.21 µm are selected. To present the current work systematically, we divided the several sections into design and parameters, results and discussions, and conclusion. The current graphene-based absorber of Zr-Fe-Ti can be applied in warm builds, water heating systems, space heating, distillation, drying, and so on. Moreover, a large area of industrial heating process and artificial photosynthesis can be used.
期刊介绍:
Plasmonics is an international forum for the publication of peer-reviewed leading-edge original articles that both advance and report our knowledge base and practice of the interactions of free-metal electrons, Plasmons.
Topics covered include notable advances in the theory, Physics, and applications of surface plasmons in metals, to the rapidly emerging areas of nanotechnology, biophotonics, sensing, biochemistry and medicine. Topics, including the theory, synthesis and optical properties of noble metal nanostructures, patterned surfaces or materials, continuous or grated surfaces, devices, or wires for their multifarious applications are particularly welcome. Typical applications might include but are not limited to, surface enhanced spectroscopic properties, such as Raman scattering or fluorescence, as well developments in techniques such as surface plasmon resonance and near-field scanning optical microscopy.