PlasmonicsPub Date : 2024-07-29DOI: 10.1007/s11468-024-02455-6
Haitham Alsaif, Jacob Wekalao, Naim Ben Ali, Omar Kahouli, Jaganathan Logeshwaran, Shobhit K. Patel, Ammar Armghan
{"title":"Design and Optimization of a MXene-Based Terahertz Surface Plasmon Resonance Sensor for Malaria Detection","authors":"Haitham Alsaif, Jacob Wekalao, Naim Ben Ali, Omar Kahouli, Jaganathan Logeshwaran, Shobhit K. Patel, Ammar Armghan","doi":"10.1007/s11468-024-02455-6","DOIUrl":"10.1007/s11468-024-02455-6","url":null,"abstract":"<div><p>Developing sensitive and specific methods for detecting malaria is a substantial challenge in biomedical research. Here, we introduce a novel approach utilizing a metasurface sensor based on graphene for the detection of malaria. Modelled on a silicon dioxide (SiO<sub>2</sub>) substrate, this sensor allows seamless integration with current electronic and optical technologies. The sensor design incorporates square and quadrant-based resonators, optimized through comprehensive parametric analysis to assess their geometric effects on sensor performance. The results demonstrate an enhanced sensitivity of 600 GHzRIU<sup>−1</sup>. Analysis of the electric field illustrates frequency-dependent transmittance properties, alongside promising 2-bit encoding capabilities. Furthermore, the research establishes a direct correlation between resonance frequency, refractive index, and analyte concentration. This sensor offers a promising avenue for swift, precise, and non-invasive malaria detection, potentially enhancing point-of-care diagnostic capabilities in healthcare settings.</p></div>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"20 4","pages":"2153 - 2163"},"PeriodicalIF":3.3,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141865297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PlasmonicsPub Date : 2024-07-27DOI: 10.1007/s11468-024-02441-y
Trupti Kamani, Shobhit K. Patel, N. K. Anushkannan, Sana ben Khalifa, Saleh Chebaane, Taoufik Saidani
{"title":"Design and Development of Surface Plasmon Resonance Biosensor for Early Detection of Cervical Cancer Utilizing Nucleus and Cytoplasm","authors":"Trupti Kamani, Shobhit K. Patel, N. K. Anushkannan, Sana ben Khalifa, Saleh Chebaane, Taoufik Saidani","doi":"10.1007/s11468-024-02441-y","DOIUrl":"10.1007/s11468-024-02441-y","url":null,"abstract":"<div><p>Cervical cancer is a significant risk to women’s lives, and early detection is crucial to secure patient quality of life. Currently, doctors’ diagnosis relies on their subjective assessments, as there is no standardized measuring method. The problem can be solved with the optical biosensor as it provides precise and quick consequences in the determination of cancerous cells. This manuscript presents a novel double c-shaped copper-based refractivity biosensor (DCSCRIB) for the recognition of cervical nucleus as well as cervical cytoplasm cells. The double c-shaped copper-based resonator provides high spatial resolution, upper sensitivity, and upper-quality factor making them for novel choice to detect the nucleus and cytoplasm of cervical cancer. The upper sensitivity (<i>S</i>) has been spotted at 1600 nm/RIU for the cervical nucleus with the upper-quality factor (QF) being 1618.37 for the cervical cytoplasm. The upper rate of the figure of merit (FOM) is 1107.18, the detection area (DR) rate is 1925.17, the signal noise ratio (SNR) rate is 33.2155, and the sensor resolution (SR) rate is 0.93 which has been spotted of cervical cytoplasm. The upper detection limit of 0.0004 has been achieved for the natural cytoplasm. This propounded sensor can highly intellect the cervical cancer biomarkers.</p></div>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"20 4","pages":"2093 - 2107"},"PeriodicalIF":3.3,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141776251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PlasmonicsPub Date : 2024-07-27DOI: 10.1007/s11468-024-02429-8
Yashaswini Singh, Adarsh Chandra Mishra, Sapana Yadav, Laxmi Jaiswal, Pooja Lohia, D. K. Dwivedi, R. K. Yadav, Gaber E. Eldesoky, M. Khalid Hossain
{"title":"High-Performance Plasmonic Biosensor for Blood Cancer Detection: Achieving Ultrahigh Figure-of-Merit","authors":"Yashaswini Singh, Adarsh Chandra Mishra, Sapana Yadav, Laxmi Jaiswal, Pooja Lohia, D. K. Dwivedi, R. K. Yadav, Gaber E. Eldesoky, M. Khalid Hossain","doi":"10.1007/s11468-024-02429-8","DOIUrl":"10.1007/s11468-024-02429-8","url":null,"abstract":"<div><p>A highly sensitive hybrid structure for biosensing application based on surface plasmon resonance for the detection of blood cancer has been proposed in this article. The biosensor comprises of a CaF<sub>2</sub> Prism, Ag metal, an oxide layer Al<sub>2</sub>O<sub>3</sub> and a 2D nanomaterial graphene, which is grounded on Kretschmann configuration. The transfer matrix method is used to interrogate the performance parameters of proposed biosensor. To analyze the change in refractive index, the analyte has been considered over the graphene layer. To achieve maximum sensitivity and minimum reflectance the thickness of Ag, Al<sub>2</sub>O<sub>3</sub> layers and number of graphene layers have been optimized. The suggested structure’s sensitivity can be enhanced up to 427.43 deg/RIU with the optimized value for the detection accuracy and FOM of 0.7027 deg<sup>−1</sup> and 217 RIU<sup>−1</sup> respectively. The work focuses on the development of plasmonic sensors with high performance and stability. Role of different material layers is also analyzed in terms of enhancement in sensitivity and evanescent field. The paper offers better optimization technique and selection of material than previously reported works, which eventually leads to enhancement in both sensitivity and FOM. This research could lead to the development of a useful biological sample sensing tool for the quick and precise detection of the blood cancer in its early stages.</p></div>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"20 4","pages":"2083 - 2091"},"PeriodicalIF":3.3,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141776254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PlasmonicsPub Date : 2024-07-27DOI: 10.1007/s11468-024-02442-x
Nagarajan P., Jacob Wekalao, Ashokkumar N., Shobhit K. Patel
{"title":"Design and Analysis of a Plasmonic Metasurface-Based Graphene Sensor for Highly Sensitive and Label-Free Detection of COVID-19 Biomarkers","authors":"Nagarajan P., Jacob Wekalao, Ashokkumar N., Shobhit K. Patel","doi":"10.1007/s11468-024-02442-x","DOIUrl":"10.1007/s11468-024-02442-x","url":null,"abstract":"<div><p>This research presents plasmonic metasurface-based graphene sensor for highly sensitive and label-free detection of COVID-19 biomarkers. The proposed sensor structure integrates graphene with specially engineered metasurface resonators for the detection of SARS-CoV-2 biomarkers through analysis of terahertz spectroscopic signatures. Finite element method simulations were performed to optimize the sensor design, including resonator dimensions, angle of incidence, and graphene chemical potential. The optimized sensor demonstrates a maximum sensitivity of 400 GHzRIU<sup>−1</sup>, a figure of merit of 0.224 RIU<sup>−1</sup>, a quality factor of 7.942, and a detection limit of 0.465 RIU. Electric field distribution analysis provides insights into the sensor’s plasmonic modes and light-matter interactions. The sensor also shows potential for 2-bit encoding applications. Compared to existing designs, the proposed sensor exhibits superior performance in key metrics like sensitivity among others. This plasmonic metasurface approach presents a promising platform for rapid, sensitive, and specific detection of SARS-CoV-2 and other viral biomarkers, with potential applications in advanced diagnostic tools and public health monitoring.</p></div>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"20 4","pages":"2109 - 2121"},"PeriodicalIF":3.3,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141776252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PlasmonicsPub Date : 2024-07-27DOI: 10.1007/s11468-024-02445-8
Jacob Wekalao, Ngaira Mandela, Jonas Muheki, Adeeb Zaid
{"title":"Design and Analysis of a Terahertz Metasurface-Based Refractive Index Sensor for Hemoglobin Detection With Behaviour Prediction Using Polynomial Regression","authors":"Jacob Wekalao, Ngaira Mandela, Jonas Muheki, Adeeb Zaid","doi":"10.1007/s11468-024-02445-8","DOIUrl":"10.1007/s11468-024-02445-8","url":null,"abstract":"<div><p>This study presents the design and analysis of a novel terahertz metasurface-based refractive index sensor for hemoglobin detection. The proposed sensor incorporates advanced materials including graphene, MXenes, SrTiO<sub>3</sub> and gold on a SiO<sub>2</sub> substrate. Comprehensive parametric optimization was conducted using COMSOL Multiphysics to enhance the sensor's sensitivity and overall performance. The optimized design demonstrated high sensitivity to hemoglobin concentration changes, with distinct transmittance responses observed for concentrations ranging from 10 g/l to 40 g/l. Electric field intensity analysis verified the sensor's transmission characteristics across different frequencies. Performance metrics such maximum sensitivity of 1000GHzRIU<sup>-1</sup>, minimum FOM of 2 RIU<sup>-1</sup>, minimum detection limit of 0.044 among other performance parameters which demonstrates exemplary results. Furthermore, polynomial regression models were employed to predict the sensor's behaviour under various parametric conditions, achieving maximum R<sup>2</sup> scores between 0.86 and 1 across different test cases.</p></div>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"20 4","pages":"2123 - 2152"},"PeriodicalIF":3.3,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141786201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PlasmonicsPub Date : 2024-07-27DOI: 10.1007/s11468-024-02435-w
Vahid Rajabpour, Karim Abbasian, Mehmet Ertugrul
{"title":"Core–Shell Plasmonic Nanostructures for Hyperthermia of Cancer and Tumor Cells","authors":"Vahid Rajabpour, Karim Abbasian, Mehmet Ertugrul","doi":"10.1007/s11468-024-02435-w","DOIUrl":"10.1007/s11468-024-02435-w","url":null,"abstract":"<div><p>Plasmonic nanostructures continue to be the most promising alternative to hyperthermia treatment of cancer or tumors by focusing the light locally. Absorption and scattering cross-sections of 48 nanorods encompassing silver and palladium as core and gold and platinum as coating with four different aspect ratios and three different coating thicknesses were examined in an aqueous solution with finite-element method (FEM). According to the highest value of photothermal conversion efficiency (PCE) in each bimetallic compound, three Au@Ag, Pt@Ag, and Au@Pd nanorods, with aspect ratios of 4, 4, and 5, respectively; and all with a coating thickness of 1 nm; were chosen as the best ones named “A,” “B,” and “C”. Each nanorod irradiated by continuous wave (CW) laser radiation with 1 mW·μm<sup>−2</sup> intensity at the LSPR wavelength for 200 ns, the temperature of the nanorods increased from 37 to 82.6, 46.34, and 44.33 °C, respectively. To robustly control the temperature in time and locally, the irradiation intensity of the “A” was decreased to 0.5 mW·μm<sup>−2</sup>, that its ambient temperature increased by 45 °C at a distance of 20 nm, which can selectively cause irreparable damage to the cancer cells. In addition, the nanorods were irradiated by pulsed laser for 200 ns periods. The results show that the bimetallic nanoparticles can convert light into heat locally.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"20 4","pages":"2069 - 2081"},"PeriodicalIF":3.3,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141785551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PlasmonicsPub Date : 2024-07-26DOI: 10.1007/s11468-024-02444-9
Yashika, Jyoti Katyal
{"title":"Detailed Analysis of Size and Shape of TiN Nanostructure on Refractive Index-Based Sensor","authors":"Yashika, Jyoti Katyal","doi":"10.1007/s11468-024-02444-9","DOIUrl":"10.1007/s11468-024-02444-9","url":null,"abstract":"<div><p>One significant application of this research article is enhancing the sensitivity of refractive index-based localized surface plasmon resonance (LSPR) sensor by using TiN nanostructures. The LSPR-based sensors are highly effective in detecting minute environmental changes and a crucial measure for these sensors is the refractive index sensitivity (RIS). The unique properties of TiN nanoparticles and the precision of the FDTD method drive significant interest in optimizing size and shape of TiN nanoparticles for enhanced RIS. By optimizing above mention parameters, we maximized the RIS to ~979 nm/RIU, thereby improving the performance of LSPR-based sensors. This research is vital for developing highly sensitive and efficient nitride-based LSPR-based sensors, which have applications in biomedical diagnostics, environmental monitoring, and other fields.</p></div>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"20 4","pages":"2057 - 2067"},"PeriodicalIF":3.3,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141785552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PlasmonicsPub Date : 2024-07-25DOI: 10.1007/s11468-024-02432-z
Rajeev Kumar, Shivam Singh, Partha Sarkar, Lalit Garia, Varun Kumar Kakar, Abdullah Saad Alsubaie, Amrindra Pal
{"title":"Sensitivity Enhancement of Franckeite-Based Surface Plasmon Resonance Sensors Using A Bimetallic Structure","authors":"Rajeev Kumar, Shivam Singh, Partha Sarkar, Lalit Garia, Varun Kumar Kakar, Abdullah Saad Alsubaie, Amrindra Pal","doi":"10.1007/s11468-024-02432-z","DOIUrl":"10.1007/s11468-024-02432-z","url":null,"abstract":"<div><p>This study proposes the franckeite layer onto a bimetallic (Au–Cu) based sensor. The proposed sensors use CaF<sub>2</sub> prism, Au (39 nm), Cu (5 nm), with/without franckeite, and adsorption layer (sensing medium (SM). All the performance analysis is carried out at 633 nm wavelength. At optimized, the bimetallic layer, the remarkable sensitivity, DA, and FoM of 350.76°/RIU, 0.144/°, and 50.50/RIU are achieved, respectively. The proposed sensor’s computed electric field (EF) intensity and penetration depth (PD) are 2.11 × 105 V/m and 204.28 nm at an RI of 1.330 SM. With a quick response indicated by a significant shift in resonance angle, the suggested structure would help detect the RI between 1.33 and 1.335. A detailed comparison with the most recent publications in biomedical applications confirms the outstanding performance of the proposed SPR sensors. This comparison highlights the significant potential of the sensors in biosensing and biomedicine.</p></div>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"20 4","pages":"2049 - 2056"},"PeriodicalIF":3.3,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141776256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PlasmonicsPub Date : 2024-07-24DOI: 10.1007/s11468-024-02415-0
Chol-Min Kim, Nam-Chol Kim, Myong-Chol Ko, Ju-Song Ryom, Su-Ryon Ri
{"title":"Feasibility of All Single-Qubit Gates with Four InGaAs Quantum Dots Coupled to Two Silver Nanowires","authors":"Chol-Min Kim, Nam-Chol Kim, Myong-Chol Ko, Ju-Song Ryom, Su-Ryon Ri","doi":"10.1007/s11468-024-02415-0","DOIUrl":"10.1007/s11468-024-02415-0","url":null,"abstract":"<div><p>We have proposed all single-qubit logic gates with four InGaAs quantum dots (QDs) coupled to a T-type plasmonic waveguides (PWs) wherein binary qubits are encoded by frequency of photons. Our results reveal that by adjusting distance between QDs, coupling strength and frequency detuning in a proper manner, an arbitrary single-qubit gates can be achieved. We investigated schemes theoretically via the real-space approach and estimated feasibilities of a proposed one by fidelities for a variety of parameters. Under the present technology and high fidelities, our proposed schemes are feasible, opening the promising perspectives for constructing quantum computation and quantum information processing.</p></div>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"20 4","pages":"2039 - 2047"},"PeriodicalIF":3.3,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141785543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PlasmonicsPub Date : 2024-07-24DOI: 10.1007/s11468-024-02428-9
Zhipeng Gao
{"title":"Design and Performance of Ultrathin MXene Nano-Absorber for Visible and Infrared Spectra","authors":"Zhipeng Gao","doi":"10.1007/s11468-024-02428-9","DOIUrl":"10.1007/s11468-024-02428-9","url":null,"abstract":"<div><p>This paper introduces an ultrathin metamaterial absorber based on MXene, consisting of a subwavelength-sized periodic square-ring-shaped nano-cylinder operating in the visible-infrared regime. The proposed absorber consists of a three-layer standard configuration, featuring a top layer comprising a MXene nano-square cylinder, a middle dielectric material, and a bottom ground plane. It is observed that the proposed nano-absorber presents a broadband response and illustrates an absorption value of 90% across a large wavelength spectrum ranging from 400 to 2400 nm. This notable absorption is attributed to the localized surface plasmonic resonances (LSPR) induced at the top metasurface composed of periodic structures. The designed absorber exhibits a polarization-insensitive response and its due to the inherent symmetric nature of the constituent top unit cell. Furthermore, the absorber maintains stable absorption even at oblique angles up to 60°. The presented nano-absorber displays promising prospective for diverse applications, including solar cells, energy harvesting, and thermal imaging.</p></div>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"20 4","pages":"2029 - 2038"},"PeriodicalIF":3.3,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141776255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}