Advances in neurobiology最新文献

筛选
英文 中文
Interactions Between Endogenous Opioids and the Immune System. 内源性阿片类药物与免疫系统之间的相互作用
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-45493-6_3
Wei Du
{"title":"Interactions Between Endogenous Opioids and the Immune System.","authors":"Wei Du","doi":"10.1007/978-3-031-45493-6_3","DOIUrl":"10.1007/978-3-031-45493-6_3","url":null,"abstract":"<p><p>The endogenous opioid system, which consists of opioid receptors and their ligands, is widely expressed in the nervous system and also found in the immune system. As a part of the body's defense machinery, the immune system is heavily regulated by endogenous opioid peptides. Many types of immune cells, including macrophages, dendritic cells, neutrophils, and lymphocytes are influenced by endogenous opioids, which affect cell activation, differentiation, proliferation, apoptosis, phagocytosis, and cytokine production. Additionally, immune cells also synthesize and secrete endogenous opioid peptides and participate peripheral analgesia. This chapter is structured into two sections. Part one focuses on immunoregulatory functions of central endogenous opioids; and part two describes how opioid peptide-containing immune cells participate in local analgesia.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141316487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microglia in Glioma. 胶质瘤中的小胶质细胞
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-55529-9_28
Stefano Garofalo, Giuseppina D'Alessandro, Cristina Limatola
{"title":"Microglia in Glioma.","authors":"Stefano Garofalo, Giuseppina D'Alessandro, Cristina Limatola","doi":"10.1007/978-3-031-55529-9_28","DOIUrl":"https://doi.org/10.1007/978-3-031-55529-9_28","url":null,"abstract":"<p><p>Myeloid cells are fundamental constituents of the brain tumor microenvironment. In this chapter, we describe the state-of-the-art knowledge on the role of microglial cells in the cross-talk with the most common and aggressive brain tumor, glioblastoma. We report in vitro and in vivo studies related to glioblastoma patients and glioma models to outline the symbiotic interactions that microglia develop with tumoral cells, highlighting the heterogeneity of microglial functions in shaping the brain tumor microenvironment.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microglia in Neuropathic Pain. 神经病理性疼痛中的小胶质细胞
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-55529-9_22
Kazuhide Inoue
{"title":"Microglia in Neuropathic Pain.","authors":"Kazuhide Inoue","doi":"10.1007/978-3-031-55529-9_22","DOIUrl":"https://doi.org/10.1007/978-3-031-55529-9_22","url":null,"abstract":"<p><p>Neuropathic pain (NP) is pain resulting from lesions or disease of the somatosensory system. A cardinal feature of NP is tactile allodynia (a painful response to normally innocuous stimulation). In 2003, a breakthrough strategy for inducing NP was proposed in which microglia of the spinal dorsal horn (SDH) are activated after peripheral nerve injury (PNI) to overexpress P2X4 receptor (P2X4R) and play an important role in inducing tactile allodynia. In 2005, it was reported that stimulation of microglial P2X4Rs evokes the release of brain-derived neurotrophic factor (BDNF), which causes a depolarizing shift of the anion reversal potential (E<sub>anion</sub>) of secondary sensory neurons. These findings and other facts suggest the mechanism by which innocuous touch stimuli cause severe pain and the important role of microglia in the mechanism.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neurodevelopmental and Neuropsychiatric Disorders. 神经发育和神经精神疾病。
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-55529-9_26
Marianela Evelyn Traetta, Adriano Maia Chaves Filho, Elizabeth Toyin Akinluyi, Marie-Ève Tremblay
{"title":"Neurodevelopmental and Neuropsychiatric Disorders.","authors":"Marianela Evelyn Traetta, Adriano Maia Chaves Filho, Elizabeth Toyin Akinluyi, Marie-Ève Tremblay","doi":"10.1007/978-3-031-55529-9_26","DOIUrl":"https://doi.org/10.1007/978-3-031-55529-9_26","url":null,"abstract":"<p><p>This chapter will focus on microglial involvement in neurodevelopmental and neuropsychiatric disorders, particularly autism spectrum disorder (ASD), schizophrenia and major depressive disorder (MDD). We will describe the neuroimmune risk factors that contribute to the etiopathology of these disorders across the lifespan, including both in early life and adulthood. Microglia, being the resident immune cells of the central nervous system, could play a key role in triggering and determining the outcome of these disorders. This chapter will review preclinical and clinical findings where microglial morphology and function were examined in the contexts of ASD, schizophrenia and MDD. Clinical evidence points out to altered microglial morphology and reactivity, as well as increased expression of pro-inflammatory cytokines, supporting the idea that microglial abnormalities are involved in these disorders. Indeed, animal models for these disorders found altered microglial morphology and homeostatic functions which resulted in behaviours related to these disorders. Additionally, as microglia have emerged as promising therapeutic targets, we will also address in this chapter therapies involving microglial mechanisms for the treatment of neurodevelopmental and neuropsychiatric disorders.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of Microglia in Stroke. 小胶质细胞在中风中的作用
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-55529-9_23
Raffaela Cipriani, Maria Domerq, Abraham Martín, Carlos Matute
{"title":"Role of Microglia in Stroke.","authors":"Raffaela Cipriani, Maria Domerq, Abraham Martín, Carlos Matute","doi":"10.1007/978-3-031-55529-9_23","DOIUrl":"https://doi.org/10.1007/978-3-031-55529-9_23","url":null,"abstract":"<p><p>Ischemic stroke is a complex brain pathology caused by an interruption of blood supply to the brain. It results in neurological deficits which that reflect the localization and the size of the compromised brain area and are the manifestation of complex pathogenic events triggered by energy depletion. Inflammation plays a prominent role, worsening the injury in the early phase and influencing poststroke recovery in the late phase. Activated microglia are one of the most important cellular components of poststroke inflammation, appearing from the first few hours and persisting for days and weeks after stroke injury. In this chapter, we will discuss the nature of the inflammatory response in brain ischemia, the contribution of microglia to injury and regeneration after stroke, and finally, how ischemic stroke directly affects microglia functions and survival.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of Microglial Modulation in Therapies for Perinatal Brain Injuries Leading to Neurodevelopmental Disorders. 小胶质细胞调节在围产期脑损伤导致神经发育障碍的治疗中的作用
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-55529-9_33
Bobbi Fleiss, Pierre Gressens
{"title":"Role of Microglial Modulation in Therapies for Perinatal Brain Injuries Leading to Neurodevelopmental Disorders.","authors":"Bobbi Fleiss, Pierre Gressens","doi":"10.1007/978-3-031-55529-9_33","DOIUrl":"https://doi.org/10.1007/978-3-031-55529-9_33","url":null,"abstract":"<p><p>Neurodevelopmental disorders (NDDs) encompass various conditions stemming from changes during brain development, typically diagnosed early in life. Examples include autism spectrum disorder, intellectual disability, cerebral palsy, seizures, dyslexia, and attention deficit hyperactivity disorder. Many NDDs are linked to perinatal events like infections, oxygen disturbances, or insults in combination. This chapter outlines the causes and effects of perinatal brain injury as they relate to microglia, along with efforts to prevent or treat such damage. We primarily discuss therapies targeting microglia modulation, focusing on those either clinically used or in advanced development, often tested in large animal models such as sheep, non-human primates, and piglets-standard translational models in perinatal medicine. Additionally, it touches on experimental studies showcasing advancements in the field.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Substance Use and Addiction. 药物使用与成瘾。
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-55529-9_19
Keionna Newton, Lindsay De Biase
{"title":"Substance Use and Addiction.","authors":"Keionna Newton, Lindsay De Biase","doi":"10.1007/978-3-031-55529-9_19","DOIUrl":"https://doi.org/10.1007/978-3-031-55529-9_19","url":null,"abstract":"<p><p>Efforts to reveal the molecular, cellular, and circuit mechanisms of addiction have largely focused on neurons. Yet accumulating data regarding the ability of glial cells to impact synaptic function, circuit activity, and behavior demands that we explore how these nonneuronal cells contribute to substance use disorders and addiction. Important work has shown that glial cells, including microglia, exhibit changes in phenotype following exposure to drugs of abuse and that modification of glial responses can impact behaviors related to drug seeking and drug taking. While these are critical first steps to understanding how microglia can impact addiction, there are still substantial gaps in knowledge that need to be addressed. This chapter reviews some of the key studies that have shown how microglia are affected by and can contribute to addiction. It also discusses areas where more knowledge is urgently needed to reveal new therapeutic and preventative approaches.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Astrocyte-Neuron Interactions in Substance Use Disorders. 物质使用障碍中星形胶质细胞与神经元的相互作用
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-64839-7_7
Eden V Harder, Janay P Franklin, Jonathan W VanRyzin, Kathryn J Reissner
{"title":"Astrocyte-Neuron Interactions in Substance Use Disorders.","authors":"Eden V Harder, Janay P Franklin, Jonathan W VanRyzin, Kathryn J Reissner","doi":"10.1007/978-3-031-64839-7_7","DOIUrl":"10.1007/978-3-031-64839-7_7","url":null,"abstract":"<p><p>Engagement of astrocytes within the brain's reward circuitry has been apparent for approximately 30 years, when noncontingent drug administration was observed to lead to cytological markers of reactive astrocytes. Since that time, advanced approaches in rodent behavior and astrocyte monitoring have revealed complex interactions between astrocytes with drug type, animal sex, brain region, and dose and duration of drug administration. A number of studies now collectively reveal that rodent drug self-administration followed by prolonged abstinence results in decreased features of structure and synaptic colocalization of astrocytes. In addition, stimulation of astrocytes in the nucleus accumbens with DREADD receptors or pharmacological compounds opposes drug-seeking behavior. These findings provide a clear path for ongoing investigation into astrocytes as mediators of drug action in the brain and underscore the potential therapeutic utility of astrocytes in the regulation of drug craving and relapse vulnerability.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142071747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of Astrocytes in Parkinson's Disease : Astrocytes in Parkinson's Disease. 星形胶质细胞在帕金森病中的作用:帕金森病中的星形胶质细胞。
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-64839-7_13
Roger Garcia, Sara Zarate, Rahul Srinivasan
{"title":"The Role of Astrocytes in Parkinson's Disease : Astrocytes in Parkinson's Disease.","authors":"Roger Garcia, Sara Zarate, Rahul Srinivasan","doi":"10.1007/978-3-031-64839-7_13","DOIUrl":"10.1007/978-3-031-64839-7_13","url":null,"abstract":"<p><p>Parkinson's disease (PD) is a neurodegenerative disorder with a complex and multifactorial pathogenesis. This chapter delves into the critical role of astrocytes in PD. Once viewed as supporting cells in the central nervous system, astrocytes have emerged as key players in both maintaining neuronal health and contributing to neurodegeneration in PD. Their functions play a dual role in the progression of PD, ranging from protective functions like secretion of neurotrophic factors and clearance of α-synuclein to detrimental functions like promotion of neuroinflammation. This chapter is structured into three primary sections: the morphological and functional organization of astrocytes, astrocytic calcium signaling, and the role of astrocyte heterogeneity in PD. We provide a detailed exploration of astrocytic organelles, bidirectional astrocyte-neuron interactions, and the impact of astrocytic secretions such as antioxidant molecules and neurotrophic factors. Furthermore, we discuss the influence of astrocytes on non-neuronal cells, including interactions with microglia and the blood-brain barrier (BBB). By examining the multifaceted roles of astrocytes, in this chapter, we aim to bridge basic astrocyte biology with the clinical complexities of PD, offering insights into novel therapeutic strategies. The inclusion of astrocyte biology in our broader research approach will aid in the development of more effective treatment strategies for PD.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142071755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contactomics of Microglia and Intercellular Communication. 小胶质细胞的接触组学与细胞间通信
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-55529-9_8
Csaba Cserép, Balázs Pósfai, Eszter Szabadits, Ádám Dénes
{"title":"Contactomics of Microglia and Intercellular Communication.","authors":"Csaba Cserép, Balázs Pósfai, Eszter Szabadits, Ádám Dénes","doi":"10.1007/978-3-031-55529-9_8","DOIUrl":"https://doi.org/10.1007/978-3-031-55529-9_8","url":null,"abstract":"<p><p>Microglia represent the main immunocompetent cell type in the parenchyma of the brain and the spinal cord, with roles extending way beyond their immune functions. While emerging data show the pivotal role of microglia in brain development, brain health and brain diseases, the exact mechanisms through which microglia contribute to complex neuroimmune interactions are still largely unclear. Understanding the communication between microglia and other cells represents an important cornerstone of these interactions, which may provide novel opportunities for therapeutic interventions in neurological or psychiatric disorders. As such, in line with studying the effects of the numerous soluble mediators that influence neuroimmune processes, attention on physical interactions between microglia and other cells in the CNS has increased substantially in recent years. In this chapter, we briefly summarize the latest literature on \"microglial contactomics\" and its functional implications in health and disease.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信