Monoamine Transporters in Drugs of Abuse: Insights from Fast Scan Cyclic Voltammetry.

Q3 Neuroscience
Shanna B Samels, Pelin Yuksel, Rodrigo A España
{"title":"Monoamine Transporters in Drugs of Abuse: Insights from Fast Scan Cyclic Voltammetry.","authors":"Shanna B Samels, Pelin Yuksel, Rodrigo A España","doi":"10.1007/978-3-031-96364-3_7","DOIUrl":null,"url":null,"abstract":"<p><p>Monoamine transmission is critical for regulating numerous physiological processes, including stress, learning, motor activity, and reward. Over the past few decades, the adoption of fast scan cyclic voltammetry has unveiled an intricate interplay between monoamine release and uptake dynamics, particularly concerning monoamine transporter involvement in reward and reinforcement processes for drugs of abuse. This review discusses how fast scan cyclic voltammetry has revolutionized our understanding of the processes that govern monoamine release and uptake, emphasizing the heterogeneity in transporter function across terminal regions, the influence of autoreceptors on monoamine transmission, and the complex interactions between drugs of abuse and monoamine transporters. While much of the review focuses on what is known about dopamine transporters-due to the wealth of evidence on dopamine transmission-we also emphasize significant gaps in knowledge regarding the serotonin and norepinephrine transporters. Finally, we highlight remaining questions about the dynamic nature of monoaminergic transporter efficiency and suggest new areas of investigation to gain a more comprehensive understanding of the biochemical mechanisms through which monoamine transporters regulate behavior.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"46 ","pages":"163-196"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-96364-3_7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0

Abstract

Monoamine transmission is critical for regulating numerous physiological processes, including stress, learning, motor activity, and reward. Over the past few decades, the adoption of fast scan cyclic voltammetry has unveiled an intricate interplay between monoamine release and uptake dynamics, particularly concerning monoamine transporter involvement in reward and reinforcement processes for drugs of abuse. This review discusses how fast scan cyclic voltammetry has revolutionized our understanding of the processes that govern monoamine release and uptake, emphasizing the heterogeneity in transporter function across terminal regions, the influence of autoreceptors on monoamine transmission, and the complex interactions between drugs of abuse and monoamine transporters. While much of the review focuses on what is known about dopamine transporters-due to the wealth of evidence on dopamine transmission-we also emphasize significant gaps in knowledge regarding the serotonin and norepinephrine transporters. Finally, we highlight remaining questions about the dynamic nature of monoaminergic transporter efficiency and suggest new areas of investigation to gain a more comprehensive understanding of the biochemical mechanisms through which monoamine transporters regulate behavior.

滥用药物中的单胺转运体:快速扫描循环伏安法的见解。
单胺传递对调节许多生理过程至关重要,包括压力、学习、运动活动和奖励。在过去的几十年里,采用快速扫描循环伏安法揭示了单胺释放和摄取动力学之间复杂的相互作用,特别是单胺转运体参与药物滥用的奖励和强化过程。这篇综述讨论了快速扫描循环伏安法如何彻底改变了我们对单胺释放和摄取过程的理解,强调了转运蛋白功能在终端区域的异质性,自身受体对单胺传递的影响,以及滥用药物与单胺转运蛋白之间的复杂相互作用。由于有大量关于多巴胺传递的证据,大部分综述都集中在对多巴胺转运体的了解上,我们也强调了关于血清素和去甲肾上腺素转运体的知识的重大空白。最后,我们强调了关于单胺转运体效率的动态性质的剩余问题,并提出了新的研究领域,以获得对单胺转运体调节行为的生化机制的更全面的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in neurobiology
Advances in neurobiology Neuroscience-Neurology
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信