Advances in neurobiology最新文献

筛选
英文 中文
Cognitive and Neural Representations of Fractals in Vision, Music, and Action. 视觉、音乐和动作中分形的认知和神经表征。
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_46
Mauricio de Jesus Dias Martins
{"title":"Cognitive and Neural Representations of Fractals in Vision, Music, and Action.","authors":"Mauricio de Jesus Dias Martins","doi":"10.1007/978-3-031-47606-8_46","DOIUrl":"10.1007/978-3-031-47606-8_46","url":null,"abstract":"<p><p>The concept of fractal was popularized by Mandelbrot as a tool to tame the geometrical structure of objects with infinite hierarchical depth. The key aspect of fractals is the use of simple parsimonious rules and initial conditions, which when applied recursively can generate unbounded complexity. Fractals are structures ubiquitous in nature, being present in coast lines, bacteria colonies, trees, and physiological time series. However, within the field of cognitive science, the core question is not which phenomena can generate fractal structures, but whether human or animal minds can represent recursive processes, and if so in which domains. In this chapter, we will explore the cognitive and neural mechanisms underlying the representation of recursive hierarchical embedding. Language is the domain in which this capacity is best studied. Humans can generate an infinite array of hierarchically structured sentences, and this capacity distinguishes us from other species. However, recent research suggests that humans can represent similar structures in the domains of music, vision, and action and has provided additional cues as to how these capacities are cognitively implemented. Using a comparative approach, we will map the commonalities and differences across domains and offer a roadmap to understand the neurobiological implementation of fractal cognition.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractal Dimension Studies of the Brain Shape in Aging and Neurodegenerative Diseases. 衰老和神经退行性疾病中大脑形状的分形维度研究。
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_17
Jennilee M Davidson, Luduan Zhang, Guang H Yue, Antonio Di Ieva
{"title":"Fractal Dimension Studies of the Brain Shape in Aging and Neurodegenerative Diseases.","authors":"Jennilee M Davidson, Luduan Zhang, Guang H Yue, Antonio Di Ieva","doi":"10.1007/978-3-031-47606-8_17","DOIUrl":"10.1007/978-3-031-47606-8_17","url":null,"abstract":"<p><p>The fractal dimension is a morphometric measure that has been used to investigate the changes of brain shape complexity in aging and neurodegenerative diseases. This chapter reviews fractal dimension studies in aging and neurodegenerative disorders in the literature. Research has shown that the fractal dimension of the left cerebral hemisphere increases until adolescence and then decreases with aging, while the fractal dimension of the right hemisphere continues to increase until adulthood. Studies in neurodegenerative diseases demonstrated a decline in the fractal dimension of the gray matter and white matter in Alzheimer's disease, amyotrophic lateral sclerosis, and spinocerebellar ataxia. In multiple sclerosis, the white matter fractal dimension decreases, but conversely, the fractal dimension of the gray matter increases at specific stages of disease. There is also a decline in the gray matter fractal dimension in frontotemporal dementia and multiple system atrophy of the cerebellar type and in the white matter fractal dimension in epilepsy and stroke. Region-specific changes in fractal dimension have also been found in Huntington's disease and Parkinson's disease. Associations were found between the fractal dimension and clinical scores, showing the potential of the fractal dimension as a marker to monitor brain shape changes in normal or pathological processes and predict cognitive or motor function.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractal Fluency: Processing of Fractal Stimuli Across Sight, Sound, and Touch. 分形流畅性:处理视觉、听觉和触觉的分形刺激。
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_45
Richard P Taylor, Catherine Viengkham, Julian H Smith, Conor Rowland, Saba Moslehi, Sabrina Stadlober, Anastasija Lesjak, Martin Lesjak, Branka Spehar
{"title":"Fractal Fluency: Processing of Fractal Stimuli Across Sight, Sound, and Touch.","authors":"Richard P Taylor, Catherine Viengkham, Julian H Smith, Conor Rowland, Saba Moslehi, Sabrina Stadlober, Anastasija Lesjak, Martin Lesjak, Branka Spehar","doi":"10.1007/978-3-031-47606-8_45","DOIUrl":"10.1007/978-3-031-47606-8_45","url":null,"abstract":"<p><p>People are continually exposed to the rich complexity generated by the repetition of fractal patterns at different size scales. Fractals are prevalent in natural scenery and also in patterns generated by artists and mathematicians. In this chapter, we will investigate the powerful significance of fractals for the human senses. In particular, we propose that fractals with mid-range complexity play a unique role in our visual experiences because the visual system has adapted to these prevalent natural patterns. This adaptation is evident at multiple stages of the visual system, ranging from data acquisition by the eye to processing of this data in the higher visual areas of the brain. Based on these results, we will discuss a fluency model in which the visual system processes mid-complexity fractals with relative ease. This fluency optimizes the observer's capabilities (such as enhanced attention and pattern recognition) and generates an aesthetic experience accompanied by a reduction in the observer's physiological stress levels. In addition to reviewing people's responses to viewing fractals, we will compare these responses to recent research focused on fractal sounds and fractal surface textures. We will extend our fractal fluency model to allow for stimuli across multiple senses.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractal-Based Morphometrics of Glioblastoma. 基于分形的胶质母细胞瘤形态计量学
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_28
Lee Curtin
{"title":"Fractal-Based Morphometrics of Glioblastoma.","authors":"Lee Curtin","doi":"10.1007/978-3-031-47606-8_28","DOIUrl":"10.1007/978-3-031-47606-8_28","url":null,"abstract":"<p><p>Morphometrics have been able to distinguish important features of glioblastoma from magnetic resonance imaging (MRI). Using morphometrics computed on segmentations of various imaging abnormalities, we show that the average and range of lacunarity and fractal dimension values across MRI slices can be prognostic for survival. We look at the repeatability of these metrics to multiple segmentations and how they are impacted by image resolution. We speak to the challenges to overcome before these metrics are included in clinical care, and the insight that they may provide.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Multiscaling of Parkinsonian Rest Tremor Signals and Their Classification. 论帕金森静息震颤信号的多尺度化及其分类
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_30
Lorenzo Livi
{"title":"On Multiscaling of Parkinsonian Rest Tremor Signals and Their Classification.","authors":"Lorenzo Livi","doi":"10.1007/978-3-031-47606-8_30","DOIUrl":"10.1007/978-3-031-47606-8_30","url":null,"abstract":"<p><p>Self-similar stochastic processes and broad probability distributions are ubiquitous in nature and in many man-made systems. The brain is a particularly interesting example of (natural) complex system where those features play a pivotal role. In fact, the controversial yet experimentally validated \"criticality hypothesis\" explaining the functioning of the brain implies the presence of scaling laws for correlations. Recently, we have analyzed a collection of rest tremor velocity signals recorded from patients affected by Parkinson's disease, with the aim of determining and hence exploiting the presence of scaling laws. Our results show that multiple scaling laws are required in order to describe the dynamics of such signals, stressing the complexity of the underlying generating mechanism. We successively extracted numeric features by using the multifractal detrended fluctuation analysis procedure. We found that such features can be effective for discriminating classes of signals recorded in different experimental conditions. Notably, we show that the use of medication (L-DOPA) can be recognized with high accuracy.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endogenous Opioids in the Homeostatic Regulation of Hunger, Satiety, and Hedonic Eating: Neurobiological Foundations. 内源性阿片类物质在饥饿、饱腹感和享乐性进食的体内平衡调节中的作用:神经生物学基础。
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-45493-6_16
Marcela Rodriguez Flores, Sylvana Stephano Zúñiga
{"title":"Endogenous Opioids in the Homeostatic Regulation of Hunger, Satiety, and Hedonic Eating: Neurobiological Foundations.","authors":"Marcela Rodriguez Flores, Sylvana Stephano Zúñiga","doi":"10.1007/978-3-031-45493-6_16","DOIUrl":"10.1007/978-3-031-45493-6_16","url":null,"abstract":"<p><p>This chapter (part one of a trilogy) summarizes the neurobiological foundations of endogenous opioids in the regulation of energy balance and eating behavior, dysregulation of which translates to maladaptive dietary responses in individuals with obesity and eating disorders, including anorexia, bulimia, and binge eating disorder. Knowledge of these neurobiological foundations is vital to researchers' and clinicians' understanding of pathophysiology as well as the science-based development of multidisciplinary diagnoses and treatments for obesity and eating disorders. We highlight mechanisms of endogenous opioids in both homeostatic and hedonic feeding behavior, review research on the dysregulation of food reward that plays a role in a wide array of obesity and disordered eating, and the clinical implications of neurobiological responses to food for current science-based treatments for obesity and eating disorders.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141316483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tenets and Methods of Fractal Analysis (1/f Noise). 分形分析的原理和方法(1/f 噪声)。
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_3
Tatjana Stadnitski
{"title":"Tenets and Methods of Fractal Analysis (1/f Noise).","authors":"Tatjana Stadnitski","doi":"10.1007/978-3-031-47606-8_3","DOIUrl":"10.1007/978-3-031-47606-8_3","url":null,"abstract":"<p><p>This chapter deals with the methodical challenges confronting researchers of the fractal phenomenon known as pink or 1/f noise. This chapter introduces concepts and statistical techniques for identifying fractal patterns in empirical time series. It defines some basic statistical terms, describes two essential characteristics of pink noise (self-similarity and long memory), and outlines four parameters representing the theoretical properties of fractal processes: the Hurst coefficient (H), the scaling exponent (α), the power exponent (β), and the fractional differencing parameter (d) of the ARFIMA (autoregressive fractionally integrated moving average) method. Then, it compares and evaluates different approaches to estimating fractal parameters from observed data and outlines the advantages, disadvantages, and constraints of some popular estimators. The final section of this chapter answers the questions: Which strategy is appropriate for the identification of fractal noise in empirical settings and how can it be applied to the data?</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
General Pathophysiology of Microglia. 小胶质细胞的一般病理生理学
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-55529-9_1
Marie-Ève Tremblay, Alexei Verkhratsky
{"title":"General Pathophysiology of Microglia.","authors":"Marie-Ève Tremblay, Alexei Verkhratsky","doi":"10.1007/978-3-031-55529-9_1","DOIUrl":"https://doi.org/10.1007/978-3-031-55529-9_1","url":null,"abstract":"<p><p>Microglia, which are the resident innate immune cells of the central nervous system (CNS), have emerged as critical for maintaining health by not only ensuring proper development, activity, and plasticity of neurones and glial cells but also maintaining and restoring homeostasis when faced with various challenges across the lifespan. This chapter is dedicated to the current understanding of microglia, including their beneficial versus detrimental roles, which are highly complex, rely on various microglial states, and intimately depend on their spatiotemporal context. Microglia are first contextualized within the perspective of finding therapeutic strategies to cure diseases in the twenty-first century-the overall functions of neuroglia with relation one to another and to neurones, and their shared CNS environment. A historical framework is provided, and the main principles of glial neuropathology are enunciated. The current view of microglial nomenclature is then covered, notably by discussing the rejected concepts of microglial activation, their polarisation into M1 and M2 phenotypes, and neuroinflammation. The transformation of the microglial population through the addition, migration, and elimination of individual members, as well as their dynamic metamorphosis between a wide variety of structural and functional states, based on the experienced physiological and pathological stimuli, is subsequently discussed. Lastly, the perspective of microglia as a cell type endowed with a health status determining their outcomes on adaptive CNS plasticity as well as disease pathology is proposed for twenty-first-century approaches to disease prevention and treatment.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synapse Regulation. 突触调节
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-55529-9_11
Haley A Vecchiarelli, Luana Tenorio Lopes, Rosa C Paolicelli, Beth Stevens, Hiroaki Wake, Marie-Ève Tremblay
{"title":"Synapse Regulation.","authors":"Haley A Vecchiarelli, Luana Tenorio Lopes, Rosa C Paolicelli, Beth Stevens, Hiroaki Wake, Marie-Ève Tremblay","doi":"10.1007/978-3-031-55529-9_11","DOIUrl":"https://doi.org/10.1007/978-3-031-55529-9_11","url":null,"abstract":"<p><p>Microglia are the resident immune cells of the brain. As such, they rapidly detect changes in normal brain homeostasis and accurately respond by fine-tuning in a tightly regulated manner their morphology, gene expression, and functional behavior. Depending on the nature of these changes, microglia can thicken and retract their processes, proliferate and migrate, release numerous signaling factors and compounds influencing neuronal physiology (e.g., cytokines and trophic factors), in addition to secreting proteases able to transform the extracellular matrix, and phagocytosing various types of cellular debris, etc. Because microglia also transform rapidly (on a time scale of minutes) during experimental procedures, studying these very special cells requires methods that are specifically non-invasive. The development of such methods has provided unprecedented insights into the roles of microglia during normal physiological conditions. In particular, transcranial two-photon in vivo imaging revealed that presumably \"resting\" microglia continuously survey the brain parenchyma with their highly motile processes, in addition to modulating their structural and functional interactions with neuronal circuits along the changes in neuronal activity and behavioral experience occurring throughout the lifespan. In this chapter, we will describe how surveillant microglia interact with synaptic elements and modulate the number, maturation, function, and plasticity of synapses in the healthy developing, mature, and aging brain, with consequences on neuronal activity, learning and memory, and the behavioral outcome.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aging Microglia and Their Impact in the Nervous System. 老化的小胶质细胞及其对神经系统的影响
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-55529-9_21
Rommy von Bernhardi, Jaime Eugenín
{"title":"Aging Microglia and Their Impact in the Nervous System.","authors":"Rommy von Bernhardi, Jaime Eugenín","doi":"10.1007/978-3-031-55529-9_21","DOIUrl":"https://doi.org/10.1007/978-3-031-55529-9_21","url":null,"abstract":"<p><p>Aging is the greatest risk factor for neurodegenerative diseases. Microglia are the resident immune cells in the central nervous system (CNS), playing key roles in its normal functioning, and as mediators for age-dependent changes of the CNS, condition at which they generate a hostile environment for neurons. Transforming Growth Factor β1 (TGFβ1) is a regulatory cytokine involved in immuneregulation and neuroprotection, affecting glial cell inflammatory activation, neuronal survival, and function. TGFβ1 signaling undergoes age-dependent changes affecting the regulation of microglial cells and can contribute to the pathophysiology of neurodegenerative diseases. This chapter focuses on assessing the role of age-related changes on the regulation of microglial cells and their impact on neuroinflammation and neuronal function, for understanding age-dependent changes of the nervous system.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信