Advances in neurobiology最新文献

筛选
英文 中文
Enkephalin Rescues Temporomandibular Joint Pain-Related Behavior in Rats. 脑啡肽能挽救大鼠颞下颌关节疼痛相关行为
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-45493-6_7
Karin N Westlund, A Caitlynn Iddings
{"title":"Enkephalin Rescues Temporomandibular Joint Pain-Related Behavior in Rats.","authors":"Karin N Westlund, A Caitlynn Iddings","doi":"10.1007/978-3-031-45493-6_7","DOIUrl":"10.1007/978-3-031-45493-6_7","url":null,"abstract":"<p><p>Temporomandibular joint disorders include a variety of clinical syndromes that are difficult to manage if associated with debilitating severe jaw pain. Thus, seeking additional experimental therapies for temporomandibular joint pain reduction is warranted. Targeted enkephalin gene therapy approaches provide clear promise for pain control. The studies detailed here indicate significant analgesia and protection of joint tissue are provided after injection of an overexpression viral vector gene therapy near the joint. The viral vector gene therapy described provides overexpression of naturally occurring opioid peptides after its uptake by trigeminal nerve endings. The viral vectors act as independent \"minipump\" sources for the opioid peptide synthesis in the neuronal cytoplasm producing the intended biological function, reduction of pain, and tissue repair. The antinociceptive effects provided with this delivery method of opioid expression persist for over 4 weeks. This is coincident with the expected time frame for the duration of the transgene overproduction of the endogenous opioid peptide before its diminution due to dormancy of the virus. These experimental studies establish a basis for the use of replication-defective herpes simplex type 1-based gene therapy for severe chronic inflammatory temporomandibular joint destruction and pain. As innovative means of significantly reducing joint inflammation and preserving tissue architecture, gene therapies may extend their clinical usefulness for patients with temporomandibular joint disorders.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"35 ","pages":"125-136"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141316485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of Endogenous Opioids in Cardioprotection. 内源性阿片类药物在心脏保护中的作用
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-45493-6_19
Cristina Sirbu
{"title":"The Role of Endogenous Opioids in Cardioprotection.","authors":"Cristina Sirbu","doi":"10.1007/978-3-031-45493-6_19","DOIUrl":"10.1007/978-3-031-45493-6_19","url":null,"abstract":"<p><p>The opioid system involves opioid receptors (OPRs) and endogenous opioid peptides.This chapter will focus on the distribution of OPRs in the cardiovascular system, the expression pattern in the heart, the activation by opioid peptides, and the effects of OPRs activation with potential relevance in cardiovascular performance. In the heart, OPRs are co-expressed with beta adrenergic receptors (β-ARs) in the G-protein-coupled receptor (GPCR) superfamily, functionally cross-talk with β-Ars and modify catecholamine-induced effects. They are involved in cardiac contractility, energy metabolism, myocyte survival or death, vascular resistance. The effects of the opioid system in the regulation of systemic circulation at both the central and peripheral level are presented. The pathways are discussed under physiological (i.e., aging) and pathological conditions (atherosclerosis, heart failure, essential hypertension, ischemic stress). Stimulation of OPRs not only inhibits cardiac excitation-contraction coupling, but also protects the heart against hypoxic and ischemic injury. An enhanced sensitivity to opioids of endocrine organs and neuronal systems is operative in hypertensive patients. The opioid system can be pharmacologically engaged to selectively mimic these responses via cardiac and nervous signaling. The clinical opportunities for the use of cardioprotective effects of opioids require future investigations to provide more specific details of the impact on cardiac performance and electrophysiological properties.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"35 ","pages":"381-395"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141316454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Astrocyte Development in the Rodent. 啮齿动物的星形胶质细胞发育
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-64839-7_3
Yajun Xie, Corey C Harwell, A Denise R Garcia
{"title":"Astrocyte Development in the Rodent.","authors":"Yajun Xie, Corey C Harwell, A Denise R Garcia","doi":"10.1007/978-3-031-64839-7_3","DOIUrl":"10.1007/978-3-031-64839-7_3","url":null,"abstract":"<p><p>Astrocytes have gained increasing recognition as key elements of a broad array of nervous system functions. These include essential roles in synapse formation and elimination, synaptic modulation, maintenance of the blood-brain barrier, energetic support, and neural repair after injury or disease of the nervous system. Nevertheless, our understanding of mechanisms underlying astrocyte development and maturation remains far behind that of neurons and oligodendrocytes. Early efforts to understand astrocyte development focused primarily on their specification from embryonic progenitors and the molecular mechanisms driving the switch from neuron to glial production. Considerably, less is known about postnatal stages of astrocyte development, the period during which they are predominantly generated and mature. Notably, this period is coincident with synapse formation and the emergence of nascent neural circuits. Thus, a greater understanding of astrocyte development is likely to shed new light on the formation and maturation of synapses and circuits. Here, we highlight key foundational principles of embryonic and postnatal astrocyte development, focusing largely on what is known from rodent studies.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"39 ","pages":"51-67"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142071734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microglia and Multiple Sclerosis. 小胶质细胞与多发性硬化症
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-55529-9_25
Brady P Hammond, Sharmistha P Panda, Deepak K Kaushik, Jason R Plemel
{"title":"Microglia and Multiple Sclerosis.","authors":"Brady P Hammond, Sharmistha P Panda, Deepak K Kaushik, Jason R Plemel","doi":"10.1007/978-3-031-55529-9_25","DOIUrl":"https://doi.org/10.1007/978-3-031-55529-9_25","url":null,"abstract":"<p><p>Multiple sclerosis (MS) is a devastating autoimmune disease that leads to profound disability. This disability arises from the stochastic, regional loss of myelin-the insulating sheath surrounding neurons-in the central nervous system (CNS). The demyelinated regions are dominated by the brain's resident macrophages: microglia. Microglia perform a variety of functions in MS and are thought to initiate and perpetuate demyelination through their interactions with peripheral immune cells that traffic into the brain. However, microglia are also likely essential for recruiting and promoting the differentiation of cells that can restore lost myelin in a process known as remyelination. Given these seemingly opposing functions, an overarching beneficial or detrimental role is yet to be ascribed to these immune cells. In this chapter, we will discuss microglia dynamics throughout the MS disease course and probe the apparent dichotomy of microglia as the drivers of both demyelination and remyelination.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"37 ","pages":"445-456"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuroimaging Correlates of Functional Outcome Following Pediatric TBI. 小儿创伤性脑损伤后功能结果的神经影像学相关性
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-69832-3_3
Emily L Dennis, Finian Keleher, Brenda Bartnik-Olson
{"title":"Neuroimaging Correlates of Functional Outcome Following Pediatric TBI.","authors":"Emily L Dennis, Finian Keleher, Brenda Bartnik-Olson","doi":"10.1007/978-3-031-69832-3_3","DOIUrl":"https://doi.org/10.1007/978-3-031-69832-3_3","url":null,"abstract":"<p><p>Neuroimaging plays an important role in assessing the consequences of TBI across the postinjury period. While identifying alterations to the brain is important, associating those changes to functional, cognitive, and behavioral outcomes is an essential step to establishing the value of advanced neuroimaging for pediatric TBI. Here we highlight research that has revealed links between advanced neuroimaging and outcome after TBI and point to opportunities where neuroimaging could expand our ability to prognosticate and potentially uncover opportunities to intervene.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"42 ","pages":"33-84"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progress in Structural and Functional In Vivo Imaging of Microglia and Their Application in Health and Disease. 小胶质细胞的结构和功能体内成像及其在健康和疾病中的应用进展。
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-55529-9_5
Alexis Crockett, Martin Fuhrmann, Olga Garaschuk, Dimitrios Davalos
{"title":"Progress in Structural and Functional In Vivo Imaging of Microglia and Their Application in Health and Disease.","authors":"Alexis Crockett, Martin Fuhrmann, Olga Garaschuk, Dimitrios Davalos","doi":"10.1007/978-3-031-55529-9_5","DOIUrl":"10.1007/978-3-031-55529-9_5","url":null,"abstract":"<p><p>The first line of defense for the central nervous system (CNS) against injury or disease is provided by microglia. Microglia were long believed to stay in a dormant/resting state, reacting only to injury or disease. This view changed dramatically with the development of modern imaging techniques that allowed the study of microglial behavior in the intact brain over time, to reveal the dynamic nature of their responses. Over the past two decades, in vivo imaging using multiphoton microscopy has revealed numerous new functions of microglia in the developing, adult, aged, injured, and diseased CNS. As the most dynamic cells in the brain, microglia continuously contact all structures and cell types, such as glial and vascular cells, neuronal cell bodies, axons, dendrites, and dendritic spines, and are believed to play a central role in sculpting neuronal networks throughout life. Following trauma, or in neurodegenerative or neuroinflammatory diseases, microglial responses range from protective to harmful, underscoring the need to better understand their diverse roles and states in different pathological conditions. In this chapter, we introduce multiphoton microscopy and discuss recent advances in structural and functional imaging technologies that have expanded our toolbox to study microglial states and behaviors in new ways and depths. We also discuss relevant mouse models available for in vivo imaging studies of microglia and review how such studies are constantly refining our understanding of the multifaceted role of microglia in the healthy and diseased CNS.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"37 ","pages":"65-80"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational Fractal-Based Analysis of MR Susceptibility-Weighted Imaging (SWI) in Neuro-Oncology and Neurotraumatology. 基于计算分形的神经肿瘤学和神经创伤学磁共振加权成像 (SWI) 分析。
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_23
Antonio Di Ieva
{"title":"Computational Fractal-Based Analysis of MR Susceptibility-Weighted Imaging (SWI) in Neuro-Oncology and Neurotraumatology.","authors":"Antonio Di Ieva","doi":"10.1007/978-3-031-47606-8_23","DOIUrl":"10.1007/978-3-031-47606-8_23","url":null,"abstract":"<p><p>Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) technique able to depict the magnetic susceptibility produced by different substances, such as deoxyhemoglobin, calcium, and iron. The main application of SWI in clinical neuroimaging is detecting microbleedings and venous vasculature. Quantitative analyses of SWI have been developed over the last few years, aimed to offer new parameters, which could be used as neuroimaging biomarkers. Each technique has shown pros and cons, but no gold standard exists yet. The fractal dimension (FD) has been investigated as a novel potential objective parameter for monitoring intratumoral space-filling properties of SWI patterns. We showed that SWI patterns found in different tumors or different glioma grades can be represented by a gradient in the fractal dimension, thereby enabling each tumor to be assigned a specific SWI fingerprint. Such results were especially relevant in the differentiation of low-grade versus high-grade gliomas, as well as from high-grade gliomas versus lymphomas.Therefore, FD has been suggested as a potential image biomarker to analyze intrinsic neoplastic architecture in order to improve the differential diagnosis within clinical neuroimaging, determine appropriate therapy, and improve outcome in patients.These promising preliminary findings could be extended into the field of neurotraumatology, by means of the application of computational fractal-based analysis for the qualitative and quantitative imaging of microbleedings in traumatic brain injury patients. In consideration of some evidences showing that SWI signals are correlated with trauma clinical severity, FD might offer some objective prognostic biomarkers.In conclusion, fractal-based morphometrics of SWI could be further investigated to be used in a complementary way with other techniques, in order to form a holistic understanding of the temporal evolution of brain tumors and follow-up response to treatment, with several further applications in other fields, such as neurotraumatology and cerebrovascular neurosurgery as well.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"36 ","pages":"445-468"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EEG Complexity Analysis of Brain States, Tasks and ASD Risk. 大脑状态、任务和自闭症风险的脑电图复杂性分析。
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_37
Stephen S Wolfson, Ian Kirk, Karen Waldie, Chris King
{"title":"EEG Complexity Analysis of Brain States, Tasks and ASD Risk.","authors":"Stephen S Wolfson, Ian Kirk, Karen Waldie, Chris King","doi":"10.1007/978-3-031-47606-8_37","DOIUrl":"10.1007/978-3-031-47606-8_37","url":null,"abstract":"<p><p>Autism spectrum disorder is an increasingly prevalent and debilitating neurodevelopmental condition and an electroencephalogram (EEG) diagnostic challenge. Despite large amounts of electrophysiological research over many decades, an EEG biomarker for autism spectrum disorder (ASD) has not been found. We hypothesized that reductions in complex dynamical system behaviour in the human central nervous system as part of the macroscale neuronal function during cognitive processes might be detectable in whole EEG for higher-risk ASD adults. In three studies, we compared the medians of correlation dimension, largest Lyapunov exponent, Higuchi's fractal dimension, multiscale entropy, multifractal detrended fluctuation analysis and Kolmogorov complexity during resting, cognitive and social skill tasks in 20 EEG channels of 39 adults over a range of ASD risk. We found heterogeneous complexity distribution with clusters of hierarchical sequences pointing to potential cognitive processing differences, but no clear distinction based on ASD risk. We suggest that there is indication of statistically significant differences between complexity measures of brain states and tasks. Though replication of our studies is needed with a larger sample, we believe that our electrophysiological and analytic approach has potential as a biomarker for earlier ASD diagnosis.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"36 ","pages":"733-759"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractal Analysis in MATLAB: A Tutorial for Neuroscientists. MATLAB 中的分形分析:神经科学家教程》(Fractal Analysis in MATLAB: A Tutorial for Neuroscientists)。
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_41
Juan Ruiz de Miras
{"title":"Fractal Analysis in MATLAB: A Tutorial for Neuroscientists.","authors":"Juan Ruiz de Miras","doi":"10.1007/978-3-031-47606-8_41","DOIUrl":"10.1007/978-3-031-47606-8_41","url":null,"abstract":"<p><p>MATLAB is one of the software platforms most widely used for scientific computation. MATLAB includes a large set of functions, packages, and toolboxes that make it simple and fast to obtain complex mathematical and statistical computations for many applications. In this chapter, we review some tools available in MATLAB for performing fractal analyses on typical neuroscientific data in a practical way. We provide detailed examples of how to calculate the fractal dimension of 1D, 2D, and 3D data in MATLAB. Furthermore, we review other software packages for fractal analysis.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"36 ","pages":"815-825"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Point of Care Testing (POCT) in Psychopathology Using Fractal Analysis and Hilbert Huang Transform of Electroencephalogram (EEG). 利用脑电图(EEG)的分形分析和希尔伯特黄变换进行精神病理学的护理点检测(POCT)。
Advances in neurobiology Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-47606-8_35
Mohammed Sakib Ihsan Khan, Herbert F Jelinek
{"title":"Point of Care Testing (POCT) in Psychopathology Using Fractal Analysis and Hilbert Huang Transform of Electroencephalogram (EEG).","authors":"Mohammed Sakib Ihsan Khan, Herbert F Jelinek","doi":"10.1007/978-3-031-47606-8_35","DOIUrl":"10.1007/978-3-031-47606-8_35","url":null,"abstract":"<p><p>Research has shown that relying only on self-reports for diagnosing psychiatric disorders does not yield accurate results at all times. The advances of technology as well as artificial intelligence and other machine learning algorithms have allowed the introduction of point of care testing (POCT) including EEG characterization and correlations with possible psychopathology. Nonlinear methods of EEG analysis have significant advantages over linear methods. Empirical mode decomposition (EMD) is a reliable nonlinear method of EEG pre-processing. In this chapter, we compare two existing EEG complexity measures - Higuchi fractal dimension (HFD) and sample entropy (SE), with our newly proposed method using Higuchi fractal dimension from the Hilbert Huang transform (HFD-HHT). We present an example using the three complexity measures on a 2-minute EEG recorded from a healthy 20-year-old male after signal pre-processing. Furthermore, we showed the usefulness of these complexity measures in the classification of major depressive disorder (MDD) with healthy controls. Our study is in line with previous research and has shown an increase in HFD and SE values in the full, alpha and beta frequency bands suggestive of an increase in EEG irregularity. Moreover, the HFD-HHT values decreased in those three bands for majority of electrodes which is suggestive of a decrease in irregularity in the frequency-time domain. We conclude that all three complexity measures can be vital features useful for EEG analysis which could be incorporated in POCT systems.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"36 ","pages":"693-715"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140100813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信