{"title":"少突胶质细胞代谢综述。","authors":"Qi Han, Jin Cheng","doi":"10.1007/978-3-031-87919-7_7","DOIUrl":null,"url":null,"abstract":"<p><p>Oligodendrocytes (OLs) exhibit complex metabolic interactions essential for neuronal function and CNS health. This chapter analyzes the metabolism of OLs, particularly glucose, lipid, and amino acid metabolism, and their impact on myelin synthesis, maintenance, and CNS resilience. OLs utilize glucose for energy through glycolysis and the pentose phosphate pathway, supporting ATP production and antioxidative defenses. Lipid synthesis, including cholesterol and sphingolipid production, is critical for maintaining myelin integrity and rapid signal conduction. Furthermore, amino acid pathways, such as those involving glutamine and serine, modulate OL differentiation and remyelination. OLs also provide metabolic support to neurons through lactate shuttling and their interactions with astrocytes in the Panglial network, ensuring sustained energy flow. Dysregulation of OL metabolic functions underlies demyelinating diseases, such as multiple sclerosis, neurodegenerative disorders, and neuropsychiatric conditions, highlighting the therapeutic potential of targeting OL metabolism to enhance remyelination and neuroprotection.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"43 ","pages":"155-179"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Overview of Oligodendrocyte Metabolism.\",\"authors\":\"Qi Han, Jin Cheng\",\"doi\":\"10.1007/978-3-031-87919-7_7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oligodendrocytes (OLs) exhibit complex metabolic interactions essential for neuronal function and CNS health. This chapter analyzes the metabolism of OLs, particularly glucose, lipid, and amino acid metabolism, and their impact on myelin synthesis, maintenance, and CNS resilience. OLs utilize glucose for energy through glycolysis and the pentose phosphate pathway, supporting ATP production and antioxidative defenses. Lipid synthesis, including cholesterol and sphingolipid production, is critical for maintaining myelin integrity and rapid signal conduction. Furthermore, amino acid pathways, such as those involving glutamine and serine, modulate OL differentiation and remyelination. OLs also provide metabolic support to neurons through lactate shuttling and their interactions with astrocytes in the Panglial network, ensuring sustained energy flow. Dysregulation of OL metabolic functions underlies demyelinating diseases, such as multiple sclerosis, neurodegenerative disorders, and neuropsychiatric conditions, highlighting the therapeutic potential of targeting OL metabolism to enhance remyelination and neuroprotection.</p>\",\"PeriodicalId\":7360,\"journal\":{\"name\":\"Advances in neurobiology\",\"volume\":\"43 \",\"pages\":\"155-179\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in neurobiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-87919-7_7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-87919-7_7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Neuroscience","Score":null,"Total":0}
Oligodendrocytes (OLs) exhibit complex metabolic interactions essential for neuronal function and CNS health. This chapter analyzes the metabolism of OLs, particularly glucose, lipid, and amino acid metabolism, and their impact on myelin synthesis, maintenance, and CNS resilience. OLs utilize glucose for energy through glycolysis and the pentose phosphate pathway, supporting ATP production and antioxidative defenses. Lipid synthesis, including cholesterol and sphingolipid production, is critical for maintaining myelin integrity and rapid signal conduction. Furthermore, amino acid pathways, such as those involving glutamine and serine, modulate OL differentiation and remyelination. OLs also provide metabolic support to neurons through lactate shuttling and their interactions with astrocytes in the Panglial network, ensuring sustained energy flow. Dysregulation of OL metabolic functions underlies demyelinating diseases, such as multiple sclerosis, neurodegenerative disorders, and neuropsychiatric conditions, highlighting the therapeutic potential of targeting OL metabolism to enhance remyelination and neuroprotection.