{"title":"多巴胺-谷氨酸和多巴胺- gaba共释放。","authors":"Annalisa Scimemi","doi":"10.1007/978-3-031-96364-3_8","DOIUrl":null,"url":null,"abstract":"<p><p>Some neuronal populations in the brain have the ability to release multiple neurotransmitters, which may be packaged in the same vesicle, or released by distinct subsets of vesicles. Here, we review current knowledge on the molecular mechanisms by which multiple neurotransmitters can be stored in the same cell and the functional implications that this has for information processing throughout the brain and the control of movement execution by basal ganglia and cortical motor circuits.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"46 ","pages":"197-214"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dopamine-Glutamate and Dopamine-GABA Co-release.\",\"authors\":\"Annalisa Scimemi\",\"doi\":\"10.1007/978-3-031-96364-3_8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Some neuronal populations in the brain have the ability to release multiple neurotransmitters, which may be packaged in the same vesicle, or released by distinct subsets of vesicles. Here, we review current knowledge on the molecular mechanisms by which multiple neurotransmitters can be stored in the same cell and the functional implications that this has for information processing throughout the brain and the control of movement execution by basal ganglia and cortical motor circuits.</p>\",\"PeriodicalId\":7360,\"journal\":{\"name\":\"Advances in neurobiology\",\"volume\":\"46 \",\"pages\":\"197-214\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in neurobiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-96364-3_8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-96364-3_8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Neuroscience","Score":null,"Total":0}
Some neuronal populations in the brain have the ability to release multiple neurotransmitters, which may be packaged in the same vesicle, or released by distinct subsets of vesicles. Here, we review current knowledge on the molecular mechanisms by which multiple neurotransmitters can be stored in the same cell and the functional implications that this has for information processing throughout the brain and the control of movement execution by basal ganglia and cortical motor circuits.