Oligodendroglia and Myelin: Supporting the Connectome.

Q3 Neuroscience
Jianqin Niu, Alexei Verkhratsky, Arthur Butt, Chenju Yi
{"title":"Oligodendroglia and Myelin: Supporting the Connectome.","authors":"Jianqin Niu, Alexei Verkhratsky, Arthur Butt, Chenju Yi","doi":"10.1007/978-3-031-87919-7_1","DOIUrl":null,"url":null,"abstract":"<p><p>Oligodendroglia are the only cell lineage of the central nervous system (CNS) responsible for producing myelin. They originate from precursor cells known as oligodendrocyte precursor cells (OPCs), which are born around the ventricular zones of the brain and spinal cord and migrate throughout the developing CNS, and many of them ultimately differentiate into mature myelinating oligodendrocytes. Recent research has shown that OPCs and oligodendrocytes possess distinct characteristics when compared either to other types of glial cells in the CNS or to each other. Under different physiological and pathophysiological conditions, the processes of development or regeneration, the features, and, in some cases, even the functions of oligodendroglia can be modified. These changes can contribute to disease progression and affect the functional status of the nervous system. For instance, experience-dependent \"adaptive\" myelination plays a crucial role in the plasticity of neuronal circuits and influences learning processes; additionally, the non-myelinating functions of oligodendroglia expand their pathological potential, allowing them to regulate neuronal development and activity, angiogenesis, astrocyte maturation, and neuroinflammation. This chapter serves as a comprehensive introduction to oligodendroglia by presenting evidence from fundamental studies and fresh insights into their development, physiological and pathophysiological attributes, as well as the newly discovered non-myelinating functions.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"43 ","pages":"1-37"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-87919-7_1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0

Abstract

Oligodendroglia are the only cell lineage of the central nervous system (CNS) responsible for producing myelin. They originate from precursor cells known as oligodendrocyte precursor cells (OPCs), which are born around the ventricular zones of the brain and spinal cord and migrate throughout the developing CNS, and many of them ultimately differentiate into mature myelinating oligodendrocytes. Recent research has shown that OPCs and oligodendrocytes possess distinct characteristics when compared either to other types of glial cells in the CNS or to each other. Under different physiological and pathophysiological conditions, the processes of development or regeneration, the features, and, in some cases, even the functions of oligodendroglia can be modified. These changes can contribute to disease progression and affect the functional status of the nervous system. For instance, experience-dependent "adaptive" myelination plays a crucial role in the plasticity of neuronal circuits and influences learning processes; additionally, the non-myelinating functions of oligodendroglia expand their pathological potential, allowing them to regulate neuronal development and activity, angiogenesis, astrocyte maturation, and neuroinflammation. This chapter serves as a comprehensive introduction to oligodendroglia by presenting evidence from fundamental studies and fresh insights into their development, physiological and pathophysiological attributes, as well as the newly discovered non-myelinating functions.

少突胶质细胞和髓磷脂:支持连接组。
少突胶质细胞是中枢神经系统(CNS)中唯一负责产生髓磷脂的细胞谱系。它们起源于被称为少突胶质前体细胞(OPCs)的前体细胞,OPCs出生在大脑和脊髓的心室区周围,并在发育中的中枢神经系统中迁移,其中许多最终分化为成熟的髓鞘少突胶质细胞。最近的研究表明,与中枢神经系统中其他类型的胶质细胞或彼此相比,OPCs和少突胶质细胞具有不同的特征。在不同的生理和病理生理条件下,少突胶质细胞的发育或再生过程、特征,在某些情况下甚至功能都可以改变。这些变化可促进疾病进展并影响神经系统的功能状态。例如,经验依赖的“适应性”髓鞘形成在神经元回路的可塑性中起着至关重要的作用,并影响学习过程;此外,少突胶质细胞的非髓鞘功能扩大了其病理潜能,使其能够调节神经元的发育和活动、血管生成、星形胶质细胞成熟和神经炎症。本章通过对少突胶质细胞的基础研究和对其发育、生理和病理生理特性以及新发现的非髓鞘功能的新见解,全面介绍了少突胶质细胞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in neurobiology
Advances in neurobiology Neuroscience-Neurology
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信