Sanghun Lee, Sanghee Han, Jaehyeon Kim, Minsung Jeon, Heeyeop Chae
{"title":"Etch Rate Uniformity Monitoring for Photoresist Etch Using Multi-channel Optical Emission Spectroscopy and Scanning Floating Harmonic Probe in an Inductively Coupled Plasma Reactor","authors":"Sanghun Lee, Sanghee Han, Jaehyeon Kim, Minsung Jeon, Heeyeop Chae","doi":"10.1007/s11090-024-10498-0","DOIUrl":"10.1007/s11090-024-10498-0","url":null,"abstract":"<div><p>The etch rate uniformity in photoresist etching was monitored using multi-channel optical emission spectroscopy (OES) and a spatially resolved etch rate model incorporating radical and ion etching characteristics. The F radical densities at various locations were estimated using 8-channel OES and applied to a radical-spontaneous etch rate model to examine the impact of radicals on the etch rate. The ion fluxes were measured using a scanning floating harmonic probe for an ion-enhanced etch rate model to investigate the effect of ions on the etch rate. A combined etch rate model was proposed to explain the effects on both radical and ion etching characteristics, and the etch rates and etch rate uniformities predicted by the model were quantitatively compared with the measured values. The calculated R-squared score (R<sup>2</sup>) and the mean absolute percentage error (MAPE) of the etch rates predicted by the model were 0.99 and 1.3%, respectively. The etch rate uniformities predicted by the model showed good accuracy with R<sup>2</sup> of 0.99 and MAPE of 12.0% compared to the measured values, and the combined etch rate model also successfully predicted the distribution of the etch rate. This study demonstrates that multi-channel OES and the developed model can quantitatively predict the etch rate distribution of plasma etching processes.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"44 6","pages":"2247 - 2262"},"PeriodicalIF":2.6,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Plasma Catalytic Non-Oxidative Conversion of Methane into Hydrogen and Light Hydrocarbons","authors":"Yonggang Gang, Yanhui Long, Kaiyi Wang, Yilin Zhang, Xuping Ren, Hao Zhang, Xiaodong Li","doi":"10.1007/s11090-024-10497-1","DOIUrl":"10.1007/s11090-024-10497-1","url":null,"abstract":"<div><p>Recently, direct non-oxidative conversion of methane (NOCM) into hydrogen and light hydrocarbons has garnered considerable attention. In our work, we employed a dielectric barrier discharge (DBD) plasma over a GaN/SBA15 catalyst for NOCM. Adding catalyst to plasma remarkably promotes the conversion of CH<sub>4</sub>, resulting in a significant improvement, for instance, from 27.8 to 39.2%. A systematic investigation of plasma performance at different discharge powers with and without catalyst was conducted. In the case of plasma + 15wt% GaN/SBA15, CH<sub>4</sub> conversion reaches an impressive 79.4%. However, it exhibits the lowest selectivity of 14.4% for C<sub>2</sub>+, while achieving the highest selectivity for hydrogen at 48.9%. Several characterization methods, including XRD, SEM, BET, XPS, and TPO-MS, were used to study the mechanism of the reaction. Plasma electrons and ions can effectively interact with activated CH3 radicals, promoting their adsorption onto Ga sites on the catalyst surface. Simultaneously, hydrogen atoms adsorb onto neighboring N atoms, rapidly delocalizing to produce H<sub>2</sub>, and the delocalization of hydrogen atoms in C species leads to the formation of species like CxHy. This study highlights the potential of plasma catalysis in significantly improving CH<sub>4</sub> conversion at lower temperatures and atmospheric pressure.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"44 6","pages":"2011 - 2029"},"PeriodicalIF":2.6,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. G. Ferreyra, E. Cejas, B. Santamaría, J. C. Chamorro, B. J. Goméz, L. Prevosto
{"title":"Numerical Simulation of the Ionic Composition and Ionization Phenomena in the Positive Column of a Millisecond DC-Pulsed Glow-Type Discharge in Atmospheric Pressure Air with a Water-Cathode","authors":"M. G. Ferreyra, E. Cejas, B. Santamaría, J. C. Chamorro, B. J. Goméz, L. Prevosto","doi":"10.1007/s11090-024-10496-2","DOIUrl":"10.1007/s11090-024-10496-2","url":null,"abstract":"<div><p>A numerical investigation of a glow-type discharge in humid air with a water-cathode is reported. A complete block of chemical reactions that self-consistently describes the ionic composition of the plasma is considered. A water molar fraction up to 20% is examined. The electric field strength, emission discharge radius, as well as the OH (A → X) band emission in the positive column was also measured for discharge currents up to 155 mA. The model shows a non-thermal plasma with lower gas temperatures (around 3500 K) than those typically obtained in similar discharges but operating with metal electrodes in dry air. The gas temperature is almost unaffected by the discharge current. The vibrational relaxation through N<sub>2</sub>–H<sub>2</sub>O collisions is the main gas heating mechanism. The thermal diffusion due to enhanced thermal conductivity by water vapor is the primary cooling mechanism. The electron temperature is around 1 eV to ensure that the electron losses (mainly by dissociative recombination of NO<sup>+</sup>) are compensated by ionization phenomena. The NO<sup>+</sup> is the dominant ion, mainly formed by electron-impact ionization of NO molecules. An electron number density close to 10<sup>19</sup> m<sup>−3</sup> is obtained. For the upper water fraction, the electron-impact ionization of O<sub>2</sub> molecules, followed by a quick conversion to NO<sup>+</sup>, also plays a role. The concentration of OH is ~ 10<sup>22</sup> m<sup>−3</sup>. A comparison between the model results and the experimental data suggests that the molar fraction of water in the plasma is around 20% for the conditions considered.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"44 6","pages":"2199 - 2231"},"PeriodicalIF":2.6,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141948039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sui Siyuan, Ni Guohua, Sun Hongmei, Kong Ling, Sun Tao
{"title":"Ar-O2 Plasma-Induced Grafting of Quaternary Ammonium on Polyvinyl Chloride Surface to Improve its Antimicrobial Properties","authors":"Sui Siyuan, Ni Guohua, Sun Hongmei, Kong Ling, Sun Tao","doi":"10.1007/s11090-024-10495-3","DOIUrl":"10.1007/s11090-024-10495-3","url":null,"abstract":"<div><p>In this paper, a novel method is presented to enhance the antimicrobial properties of polyvinyl chloride (PVC) via plasma-induced grafting of quaternary ammonium (QA). The results show that the content of oxygen-containing functional groups on PVC surface is significantly increased after Ar-O<sub>2</sub> plasma treatment, beneficially enhancing the thickness and adhesion of QA coating. Plasma treatment time critically affects the morphology of PVC surface, which is closely related to the number, depth and diameter of pit on the surface. With the increase of pits size, the PVC surface forms ridge-like protrusions. The coating formed by grafting QA maintains the morphology characteristics of plasma-treated PVC surface. Results of antibacterial test show that specimens have the best antibacterial activity when there are a high and sharp ridge-like structure of QA coating on the plasma-treated PVC surface.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"44 5","pages":"1951 - 1969"},"PeriodicalIF":2.6,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141871053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Influence of Dielectric Barrier Discharge Power on the Removal of CH4 and NO From Exhaust Emissions of LNG Engines","authors":"Zhengtao Zhao, Lin Lyu, Chuang Xiang, Yunkai Cai","doi":"10.1007/s11090-024-10491-7","DOIUrl":"10.1007/s11090-024-10491-7","url":null,"abstract":"<div><p>This study aims to explore the use of Dielectric Barrier Discharge (DBD) technology for the joint treatment of methane (CH<sub>4</sub>) and nitrogen oxide (NO) in the exhaust of Liquid Natural Gas (LNG) engines during cold starts and at mid to low loads when the exhaust temperature is below 500 °C. Through experiment and numerical simulation, the effect of discharge power on the removal efficiency of CH<sub>4</sub> and NO in the exhaust of LNG engines was investigated under the condition of simulated flue gas temperature at 438 °C. A plasma chemical model suitable for analyzing the mixture of N<sub>2</sub>/O<sub>2</sub>/H<sub>2</sub>O/CH<sub>4</sub>/NO in the exhaust gases of LNG engines was constructed and validated. The study found that the conversion efficiency of CH<sub>4</sub> and NO exhibits different trends with the increase of discharge power, and CH<sub>4</sub> tends to be oxidized to CO under plasma conditions. Key reaction pathways for the DBD treatment of CH<sub>4</sub>, NO, CO, and NO<sub>2</sub> were identified, and an important chemical reaction pathway with the potential for the joint treatment of CH<sub>4</sub> and NO was found: CH<sub>3</sub>O<sub>2</sub> + NO → CH<sub>3</sub>O + NO<sub>2</sub>. Additionally, the crucial pathways for the stable conversion of NO to NO<sub>2</sub> were identified: O + NO + N<sub>2</sub> → NO<sub>2</sub> + N<sub>2</sub> and NO + O<sub>3</sub> → NO<sub>2</sub> + O<sub>2</sub>, providing forward-looking theoretical guidance for subsequent research on plasma-facilitated selective catalytic reduction of NOx by CH<sub>4</sub>.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"44 5","pages":"1925 - 1949"},"PeriodicalIF":2.6,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141648868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Low-Temperature Oxidation of Diesel Particulate Matter Using Dielectric Barrier Discharge Plasma","authors":"Baoyong Ren, Tiantian Zhang, Zuliang Wu, Jing Li, Erhao Gao, Wei Wang, Jiali Zhu, Shuiliang Yao","doi":"10.1007/s11090-024-10492-6","DOIUrl":"10.1007/s11090-024-10492-6","url":null,"abstract":"<div><p>The oxidation behavior of actual diesel particulate matter (DPM) prepared from diesel combustion was studied using a dielectric barrier discharge (DBD) reactor. The primary oxidation temperature (<i>T</i><sub>30</sub> at which 30% of DPM was oxidized) was reduced from 524 °C (with non-discharge, NDC) to 409 °C with discharge (DC). It was found that the dry soot (DS) from DPM after dichloromethane extraction was more difficult to be oxidized than DPM due to the loss of soluble organic fraction (SOF) from DPM. The order of activation energies of DPM and DS under conditions of DC and NDC is: DPM–DC < DPM–NDC < DS–DC < DS–NDC. The intermediates of DPM oxidation at different temperatures, pulse peak voltages and reaction gas atmospheres were investigated via <i>operando</i> DRIFTS–MS. It is found that under DC, SOF can be oxidized to oxygen containing compounds (OCC) at low temperatures, and a higher pulse peak voltage is beneficial to DPM oxidation. The main product of 10 vol% O<sub>2</sub>/N<sub>2</sub> discharge gas is high valence nitrogen oxides like NO<sub>2</sub>, which participates in DPM oxidation. DBD plasma enhances DPM oxidation primarily through two mechanisms: first, by ionizing O<sub>2</sub> to produce strong oxidizing substances, and second, by inhibiting the increasing content of graphitized components. This study provides a comprehensive understanding of DPM oxidation kinetics and intermediates under DBD plasma.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"44 5","pages":"1905 - 1923"},"PeriodicalIF":2.6,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141587286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Degradation of Methylene Blue by Using an Argon Microwave Plasma Jet in Humid Environment","authors":"Nadir Aloui, Ibtissem Belgacem, Ahmad Hamdan","doi":"10.1007/s11090-024-10494-4","DOIUrl":"10.1007/s11090-024-10494-4","url":null,"abstract":"<div><p>Plasma-liquid interactions yield numerous physicochemical phenomena, rendering them promising for various applications. Plasma-based technology is proposed for water treatment due to its high efficiency in removing contaminants unattainable by conventional techniques. In this study, we employ an argon microwave plasma jet (MWPJ) to investigate methylene blue (MB) degradation. We observe a significant enhancement in the MB degradation rate in a covered system, attributed to increased air humidity promoting hydroxyl radicals (OH) production, which degrade approximately 95% of MB. Furthermore, the injection of O<sub>2</sub> gas into the solution under the plasma generates more hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), around 30 mg/L compared to approximately 20 mg/L without injection, although the MB degradation efficiency is reduced. We evaluate MB degradation under various solution properties, revealing that increasing electrical conductivity decreases the MB degradation rate until it becomes independent for conductivities > 10,000 µS/cm. In these latter conditions, a non-conventional temporal evolution of solution conductivity was observed: a decrease during the first tens of minutes followed by a continuous increase for longer treatment time. Conversely, solution acidity minimally affects the MB degradation rate. The MWPJ is characterized by optical emission spectroscopy, showing stability over time and under various solution properties. The energy yield (Y<sub>50%</sub>) consistently demonstrates superior performance of the MWPJ in a closed environment compared to an open-to-air environment. Although its efficiency is relatively low compared to other systems, we anticipate improvements through parameter adjustments.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"44 5","pages":"1971 - 1989"},"PeriodicalIF":2.6,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141576558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ali Nawaz, Alessandro Cian, Lorenza Ferrario, Antonino Picciotto
{"title":"Multi-cycle Chamber Conditioning for Plasma Etching of SiO2: From Optimization to Stability in Lot Processing","authors":"Ali Nawaz, Alessandro Cian, Lorenza Ferrario, Antonino Picciotto","doi":"10.1007/s11090-024-10493-5","DOIUrl":"10.1007/s11090-024-10493-5","url":null,"abstract":"<div><p>Hydrofluorocarbon gas chemistries have long been favored for SiO<sub>2</sub> etching. However, the fluorocarbon polymer generated during the process not only assists in obtaining a high selectivity, but also leads to chamber wall contamination. The adhesion efficiency of the polymer depends on the chamber wall temperature, which needs to be well-controlled to ensure controllable polymer deposition rate and etch characteristics. Similarly, the increasing gas temperature during the process is also expected to increase the production rate of polymer precursors. Hence, it is important to properly condition the chamber so that a sufficiently high and stable chamber temperature is reached before starting the actual process. This work utilizes an Inductively Coupled Plasma Reactive Ion Etcher to optimize a multi-cycle chamber conditioning process for two C<sub>4</sub>F<sub>8</sub>/H<sub>2</sub>-based chemistries. We use the integrated optical emission spectroscopy (OES) tool to show that the dependence of etch characteristics on conditioning time is much stronger for the highly polymerizing chemistry. For a low conditioning time (< 15 min), the instability of plasma species indicate that the chamber temperature has not yet plateaued, resulting in a ⁓60% decrease of recess in the underlying silicon layer during the lot processing time. By conducting systematic etch tests, we analyze the behavior of key OES peaks to identify the optimal conditioning time (≥ 30 min) for this recipe, which results in only a 13% decrease in silicon recess depth during the processing time. Subsequently, a method to assess the stability of plasma species during the conditioning process is devised, assisting in advance to identify the optimal moment to initiate the lot process. By comparing the experimental results of the two etch recipes, we also highlight the important correlation between conditioning time and polymerizing degree of the chemistry.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"44 5","pages":"1991 - 2009"},"PeriodicalIF":2.6,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141576559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Particle Condensation in Two-Temperature (2T) Arc Plasmas of Various SF6 Replacements","authors":"Linlin Zhong, Bayitake Baheti, Qi Wu","doi":"10.1007/s11090-024-10490-8","DOIUrl":"10.1007/s11090-024-10490-8","url":null,"abstract":"<div><p>Fluorinated gases, e.g., CF<sub>3</sub>I, C<sub>3</sub>F<sub>8</sub>, C<sub>4</sub>F<sub>8</sub>, C<sub>4</sub>F<sub>7</sub>N, and C<sub>5</sub>F<sub>10</sub>O, show potential to replace SF<sub>6</sub> in power industry due to their high dielectric strength and low global warming potential . However, particle condensation from arc plasmas of these compounds may reduce dielectric performance. We perform a systematic investigation of particle condensation in two-temperature (2T) arc plasmas of various SF<sub>6</sub> replacements mixed with CO<sub>2</sub>, N<sub>2</sub>, and O<sub>2</sub>, by the Gibbs free energy minimization and entropy maximization methods. The influences of buffer gases, non-equilibrium degree, and gas pressure on particle condensation are discussed in various cases. The results indicate that O<sub>2</sub> is necessary to prevent graphite formation in carbon–fluorine gaseous arcs, and specific mixing ratios of CO<sub>2</sub> and N<sub>2</sub> are required to avoid graphite and iodine crystals in CF<sub>3</sub>I arc plasmas. The relationship between condensation temperature and non-equilibrium degree is complex, with peaks and valleys observed for graphite and iodine crystal condensation temperatures. Moreover, different calculation methods (Gibbs free energy minimization versus entropy maximization) show varying sensitivity of condensation temperatures to pressure changes. All the above findings highlight the importance of considering non-equilibrium effects and multiple condensed species in evaluating arc plasma compositions of SF<sub>6</sub> replacements.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"44 5","pages":"1867 - 1882"},"PeriodicalIF":2.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141506305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Calculation of the decomposition products of C5F10O-Air mixtures from 500 K to 3500 K with a chemical kinetic model","authors":"Qingqing Gao, Xiaohua Wang, Haofei Sun, Aijun Yang, Chunping Niu","doi":"10.1007/s11090-024-10485-5","DOIUrl":"10.1007/s11090-024-10485-5","url":null,"abstract":"<div><p>C<sub>5</sub>F<sub>10</sub>O-Air mixtures have a great potential to replace SF<sub>6</sub> in medium-voltage power equipment. However, during the partial overheating or arc discharge, C<sub>5</sub>F<sub>10</sub>O-Air mixtures are inevitably to decompose to form various byproducts. The local chemical non-equilibrium and local thermal non-equilibrium appears due to the finite reaction rates and insufficient energy change between species. This paper establishes a chemical kinetic model to calculate the decomposition byproducts of C<sub>5</sub>F<sub>10</sub>O-Air mixtures from 500 K to 3500 K by taking into account the local thermal non-equilibrium and local chemical non-equilibrium simultaneously. The chemical kinetic model contains 50 species and 249 reactions. All the reactions are assumed to be reversible except the reactions producing photos. The local thermal non-equilibrium is characterized by the difference of the electron temperature (<i>T</i><sub>e</sub>) and the temperature of heavy species (<i>T</i><sub>h</sub>). In this work, the ratio of <i>T</i><sub>e</sub> to <i>T</i><sub>h</sub> is determined to be a function of the electron number density. Therefore, the value varies with electron number density. The temperature dependent decomposition composition of C<sub>5</sub>F<sub>10</sub>O-Air mixtures with C<sub>5</sub>F<sub>10</sub>O content to be 5%, 10% and 15% are obtained. In order to investigate the effects of Air on the decomposition of C<sub>5</sub>F<sub>10</sub>O, the decomposition products of pure C<sub>5</sub>F<sub>10</sub>O from 500 K to 3500 K are also investigated. In addition, the main chemical processes in 0.1C<sub>5</sub>F<sub>10</sub>O-0.9Air mixture are investigated by capturing the main reaction pathways. The main reaction pathways can help interpret the formation mechanism of the decomposition products.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"44 5","pages":"1883 - 1903"},"PeriodicalIF":2.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141519124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}