{"title":"Low-Temperature Oxidation of Diesel Particulate Matter Using Dielectric Barrier Discharge Plasma","authors":"Baoyong Ren, Tiantian Zhang, Zuliang Wu, Jing Li, Erhao Gao, Wei Wang, Jiali Zhu, Shuiliang Yao","doi":"10.1007/s11090-024-10492-6","DOIUrl":null,"url":null,"abstract":"<div><p>The oxidation behavior of actual diesel particulate matter (DPM) prepared from diesel combustion was studied using a dielectric barrier discharge (DBD) reactor. The primary oxidation temperature (<i>T</i><sub>30</sub> at which 30% of DPM was oxidized) was reduced from 524 °C (with non-discharge, NDC) to 409 °C with discharge (DC). It was found that the dry soot (DS) from DPM after dichloromethane extraction was more difficult to be oxidized than DPM due to the loss of soluble organic fraction (SOF) from DPM. The order of activation energies of DPM and DS under conditions of DC and NDC is: DPM–DC < DPM–NDC < DS–DC < DS–NDC. The intermediates of DPM oxidation at different temperatures, pulse peak voltages and reaction gas atmospheres were investigated via <i>operando</i> DRIFTS–MS. It is found that under DC, SOF can be oxidized to oxygen containing compounds (OCC) at low temperatures, and a higher pulse peak voltage is beneficial to DPM oxidation. The main product of 10 vol% O<sub>2</sub>/N<sub>2</sub> discharge gas is high valence nitrogen oxides like NO<sub>2</sub>, which participates in DPM oxidation. DBD plasma enhances DPM oxidation primarily through two mechanisms: first, by ionizing O<sub>2</sub> to produce strong oxidizing substances, and second, by inhibiting the increasing content of graphitized components. This study provides a comprehensive understanding of DPM oxidation kinetics and intermediates under DBD plasma.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"44 5","pages":"1905 - 1923"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-024-10492-6","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The oxidation behavior of actual diesel particulate matter (DPM) prepared from diesel combustion was studied using a dielectric barrier discharge (DBD) reactor. The primary oxidation temperature (T30 at which 30% of DPM was oxidized) was reduced from 524 °C (with non-discharge, NDC) to 409 °C with discharge (DC). It was found that the dry soot (DS) from DPM after dichloromethane extraction was more difficult to be oxidized than DPM due to the loss of soluble organic fraction (SOF) from DPM. The order of activation energies of DPM and DS under conditions of DC and NDC is: DPM–DC < DPM–NDC < DS–DC < DS–NDC. The intermediates of DPM oxidation at different temperatures, pulse peak voltages and reaction gas atmospheres were investigated via operando DRIFTS–MS. It is found that under DC, SOF can be oxidized to oxygen containing compounds (OCC) at low temperatures, and a higher pulse peak voltage is beneficial to DPM oxidation. The main product of 10 vol% O2/N2 discharge gas is high valence nitrogen oxides like NO2, which participates in DPM oxidation. DBD plasma enhances DPM oxidation primarily through two mechanisms: first, by ionizing O2 to produce strong oxidizing substances, and second, by inhibiting the increasing content of graphitized components. This study provides a comprehensive understanding of DPM oxidation kinetics and intermediates under DBD plasma.
期刊介绍:
Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.