Energy advances最新文献

筛选
英文 中文
Fabrication methods, pseudocapacitance characteristics, and integration of conjugated conducting polymers in electrochemical energy storage devices 电化学储能装置中共轭导电聚合物的制造方法、伪电容特性和集成
IF 3.2
Energy advances Pub Date : 2024-10-15 DOI: 10.1039/D4YA00504J
Meysam Heydari Gharahcheshmeh and Kafil Chowdhury
{"title":"Fabrication methods, pseudocapacitance characteristics, and integration of conjugated conducting polymers in electrochemical energy storage devices","authors":"Meysam Heydari Gharahcheshmeh and Kafil Chowdhury","doi":"10.1039/D4YA00504J","DOIUrl":"https://doi.org/10.1039/D4YA00504J","url":null,"abstract":"<p >Among the diverse range of modern renewable energy storage technologies, electrochemical energy storage devices have been rapidly adopted across various applications owing to their superior characteristics, including high coulombic efficiency, elevated energy and power densities, scalability, modularity, and rapid response capabilities. Conjugated conducting polymers have recently attracted significant attention in electrochemical energy storage devices due to their unique pseudocapacitive behavior, hybrid ionic/electronic conduction, rapid doping/de-doping dynamics, bulk intercalation of ionic species, high specific capacity, and exceptional structural and thermal stability. Conducting polymers exhibit pseudocapacitance through reversible redox reactions coupled with doping/de-doping processes, facilitating the movement of counterion dopants and ionic species between the polymer matrix and the electrolyte. The size and nature of counterion dopants significantly influence the electrochemical performance of these polymers. Small counterion dopants like chloride enhance redox exchange with the electrolyte and broaden the electrochemical potential window, which is advantageous for electrochemical energy storage devices. The pseudocapacitive properties can be further enhanced by increasing the semi-crystalline characteristics and attaining longer polymer chains. This review article focuses on the fabrication methods, fundamental aspects of ionic and electrical conductivity, and pseudocapacitance characteristics of conjugated conducting polymers, as well as their applications in Li–ion batteries, supercapacitors, and redox flow batteries.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00504j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Competing effects of low salt ratio on electrochemical performance and compressive modulus of PEO-LiTFSI/LLZTO composite electrolytes† 低盐比对 PEO-LiTFSI/LLZTO 复合电解质电化学性能和压缩模量的竞争效应†。
IF 3.2
Energy advances Pub Date : 2024-10-03 DOI: 10.1039/D4YA00467A
Jiaxin Zhang, Valeria Perez, ThomasJae Garcia, Dan-il Yoon, David Wagner, Yanika Schneider, Min Hwan Lee, Sang-Joon John Lee and Dahyun Oh
{"title":"Competing effects of low salt ratio on electrochemical performance and compressive modulus of PEO-LiTFSI/LLZTO composite electrolytes†","authors":"Jiaxin Zhang, Valeria Perez, ThomasJae Garcia, Dan-il Yoon, David Wagner, Yanika Schneider, Min Hwan Lee, Sang-Joon John Lee and Dahyun Oh","doi":"10.1039/D4YA00467A","DOIUrl":"https://doi.org/10.1039/D4YA00467A","url":null,"abstract":"<p >Polyethylene oxide (PEO)-based solid composite electrolytes (SCEs), with inorganic fillers, are studied extensively due to their effective balance between mechanical and electrochemical properties. The correlation between the composition of SCEs and their electrochemical behavior has been studied extensively, primarily focusing on the type of polymer matrix with a bias towards high lithium (Li) salt. In this study, we examine the changes in the properties of SCEs at two low EO : Li ratios, 43 : 1 and 18 : 1, in the PEO-LiTFSI matrix (with and without 10 wt% of 5 μm LLZTO) and evaluate their impact on Li stripping and plating reactions. Although higher salt concentration (18 : 1) results in substantially higher ionic conductivity (by approximately an order of magnitude), interestingly we observe that lower salt concentration (43 : 1) exhibits up to 3 times longer Li cycling life. Notably, electrolytes with low salt concentration (43 : 1) are much stiffer, with compressive modulus more than twice as high as the 18 : 1 counterpart. Although the ionic conductivity of the electrolyte is often the most immediate concern in the electrolyte design process, these findings accentuate the equal importance of mechanical properties in order to ensure successful electrolyte performance throughout prolonged Li cycling.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00467a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Triethanolamine-assisted surface reconstruction of nickel oxide for efficient oxygen evolution reaction† 三乙醇胺辅助下的氧化镍表面重构,用于高效氧气进化反应†。
IF 3.2
Energy advances Pub Date : 2024-09-26 DOI: 10.1039/D4YA00420E
Jiayun Zhang, Ruth Knibbe and Ian Gentle
{"title":"Triethanolamine-assisted surface reconstruction of nickel oxide for efficient oxygen evolution reaction†","authors":"Jiayun Zhang, Ruth Knibbe and Ian Gentle","doi":"10.1039/D4YA00420E","DOIUrl":"https://doi.org/10.1039/D4YA00420E","url":null,"abstract":"<p >Developing low cost and highly efficient electrocatalysts for the oxygen evolution reaction (OER) is highly desired for renewable energy production. Ni-based electrocatalysts have been widely investigated as candidates for the OER, but developing a low-cost, easily synthesized electrocatalyst with high activity and good stability remains elusive. Herein, we report the facile electrodeposition of triethanolamine-decorated Ni oxide on carbon paper (Ni/CP-TEA) as an efficient electrocatalyst for water oxidation. Structural and experimental analyses reveal that the electrode surface is modified by triethanolamine (TEA) through Ni–N coordination bonding. The leaching of TEA drives rapid <em>in situ</em> surface reconstruction, facilitating the generation of high-valence Ni (Ni<small><sup>3+</sup></small>) species, thereby accelerating the OER performance. The Ni/CP-TEA exhibits enhanced electrocatalytic OER performance with a low overpotential of 320 mV at 10 mA cm<small><sup>−2</sup></small> and good long-term stability. This work presents a simple route for the rational design of cost-effective and highly efficient OER catalysts.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00420e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A high frequency alternating current heater using the advantages of a damped oscillation circuit for low voltage Li-ion batteries 利用阻尼振荡电路优势的高频交流加热器,适用于低压锂离子电池
IF 3.2
Energy advances Pub Date : 2024-09-25 DOI: 10.1039/D4YA00303A
Joachim Oehl, Andreas Gleiter, Daniel Manka, Alexander Fill and Kai Peter Birke
{"title":"A high frequency alternating current heater using the advantages of a damped oscillation circuit for low voltage Li-ion batteries","authors":"Joachim Oehl, Andreas Gleiter, Daniel Manka, Alexander Fill and Kai Peter Birke","doi":"10.1039/D4YA00303A","DOIUrl":"https://doi.org/10.1039/D4YA00303A","url":null,"abstract":"<p >In many cases, batteries used in light e-mobility vehicles such as e-bikes and e-scooters do not have an active thermal management system. This poses a challenge when these batteries are stored in sub-zero temperatures and need to be charged. In such cases, it becomes necessary to move the batteries to a warmer location and allow them to acclimatize before charging. However, this is not always feasible, especially for batteries installed permanently in vehicles. In this work, we present an internal high-frequency AC heater for a 48 V battery, which is used for light electric vehicles of EU vehicle classes L1e and L3e-A1 for a power supply of up to 11 kW. We have taken advantage of the features of a damped oscillating circuit to improve the performance of the heater. Additionally, only a small inductor was added to the main current path through a cable with three windings. Furthermore, as the power electronics of the heater is part of the battery main switch, fewer additional parts inside the battery are required and therefore a cost and space reduction compared to other heaters is possible. For the chosen setup we reached a heating rate of up to 2.13 K min<small><sup>−1</sup></small> and it was possible to raise the battery temperature from −10 °C to 10 °C using only 3.1% of its own usable capacity.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00303a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating the ion conductivity and synthesis conditions of calcium monocarborane solid-state electrolytes† 研究单碳硼烷钙固态电解质的离子导电性和合成条件†。
IF 3.2
Energy advances Pub Date : 2024-09-20 DOI: 10.1039/D4YA00441H
Takara Shinohara, Kazuaki Kisu, Shigeyuki Takagi and Shin-ichi Orimo
{"title":"Investigating the ion conductivity and synthesis conditions of calcium monocarborane solid-state electrolytes†","authors":"Takara Shinohara, Kazuaki Kisu, Shigeyuki Takagi and Shin-ichi Orimo","doi":"10.1039/D4YA00441H","DOIUrl":"https://doi.org/10.1039/D4YA00441H","url":null,"abstract":"<p >Multivalent-ion and all-solid-state batteries have emerged as potential solutions to address resource concerns and safety issues. Calcium is a promising element for multivalent-ion batteries owing to its abundance in the Earth's crust and low reduction potential. In addition, complex hydrides exhibit both high ion conductivity and reduction stability, making them suitable materials for solid-state ion conductors. In this study, we investigated the thermal stability and optimised the synthesis conditions of calcium monocarborane, namely, Ca(CB<small><sub>11</sub></small>H<small><sub>12</sub></small>)<small><sub>2</sub></small>, which is a <em>closo</em>-type calcium complex hydride. In addition, we conducted electrochemical analysis to assess its performance as a solid-state divalent-ion conductor. The results indicate that a heat-treatment temperature of 433 K provides Ca(CB<small><sub>11</sub></small>H<small><sub>12</sub></small>)<small><sub>2</sub></small> with higher ion conductivity (<em>σ</em> = 1.42 × 10<small><sup>−4</sup></small> S cm<small><sup>−1</sup></small>) than the other heating temperatures. Thus, 433 K is considered optimal because [CB<small><sub>11</sub></small>H<small><sub>12</sub></small>]<small><sup>−</sup></small> anions decompose when heat-treated at and above 453 K. Furthermore, the insertion and deinsertion of Ca<small><sup>2+</sup></small> ions are stable and reversible in symmetric cells employing Ca–Sn alloy electrodes, representing the first time this has been observed for an inorganic solid-state calcium-ion conductor. Such insertion and deinsertion highlight the potential of Ca(CB<small><sub>11</sub></small>H<small><sub>12</sub></small>)<small><sub>2</sub></small> as a solid-state electrolyte for battery applications.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00441h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boosting ethylene yield via a synergistic 2D/0D nanostructured VCu layered double hydroxide/TiO2 catalyst in electrochemical CO2 reduction† 在电化学二氧化碳还原过程中通过协同 2D/0D 纳米结构 VCu 层状双氢氧化物/二氧化钛催化剂提高乙烯产量
IF 3.2
Energy advances Pub Date : 2024-09-18 DOI: 10.1039/D4YA00417E
Sneha S. Lavate and Rohit Srivastava
{"title":"Boosting ethylene yield via a synergistic 2D/0D nanostructured VCu layered double hydroxide/TiO2 catalyst in electrochemical CO2 reduction†","authors":"Sneha S. Lavate and Rohit Srivastava","doi":"10.1039/D4YA00417E","DOIUrl":"10.1039/D4YA00417E","url":null,"abstract":"<p >The electrochemical conversion of CO<small><sub>2</sub></small> into C<small><sub>1</sub></small> and C<small><sub>2</sub></small> hydrocarbons, such as methane and ethylene, is a promising pathway toward achieving net zero carbon emissions; however, owing to the high activation barrier of CO<small><sub>2</sub></small>, this reaction remains a big challenge. In this work, an effective strategy has been developed through the synthesis of a low-cost vanadium- and copper-based layered double hydroxide (LDH) decorated with TiO<small><sub>2</sub></small> nanoparticles (VCu LDH/TiO<small><sub>2</sub></small>) as a highly efficient electrocatalyst for the electrochemical reduction of CO<small><sub>2</sub></small> to ethylene. Structural and morphological studies of the developed electrocatalyst were carried out using various analytical techniques such as X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (FESEM), X-ray photoelectron microscopy (XPS) and transmission electron microscopy (TEM), which confirmed the successful formation of VCu LDH/TiO<small><sub>2</sub></small>. The electrochemical CO<small><sub>2</sub></small> reduction reaction (CO<small><sub>2</sub></small>RR) was performed in 0.1 M KHCO<small><sub>3</sub></small> using an H-type cell and afforded CO, H<small><sub>2</sub></small>, CH<small><sub>4</sub></small>, and C<small><sub>2</sub></small>H<small><sub>4</sub></small> as value-added end products. The highest faradaic efficiency of 84% was obtained for C<small><sub>2</sub></small>H<small><sub>4</sub></small> at −0.4 V <em>vs.</em> RHE. The above results suggest that the VCu LDH/TiO<small><sub>2</sub></small> NP electrocatalyst may be an excellent candidate for CO<small><sub>2</sub></small> reduction and can also be utilized in a wide range of energy conversion and storage applications.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00417e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effective electrochemical water oxidation to H2O2 based on a bimetallic Fe/Co metal–organic framework 基于双金属 Fe/Co 金属有机框架的有效电化学水氧化 H2O2
IF 3.2
Energy advances Pub Date : 2024-09-16 DOI: 10.1039/D4YA00477A
Kunpeng Liu, Xu Wang, Nan Wang, Ruiyong Zhang, Meinan Yang, Baorong Hou and Wolfgang Sand
{"title":"Effective electrochemical water oxidation to H2O2 based on a bimetallic Fe/Co metal–organic framework","authors":"Kunpeng Liu, Xu Wang, Nan Wang, Ruiyong Zhang, Meinan Yang, Baorong Hou and Wolfgang Sand","doi":"10.1039/D4YA00477A","DOIUrl":"10.1039/D4YA00477A","url":null,"abstract":"<p >Rationally designing high-efficiency catalysts for electrochemical two-electron water oxidation reaction (2e<small><sup>−</sup></small> WOR) to produce hydrogen peroxide (H<small><sub>2</sub></small>O<small><sub>2</sub></small>) is extremely important, while designing bimetallic metal–organic frameworks (MOFs) is of great significance for effective 2e<small><sup>−</sup></small> WOR. Herein, MIL-53(Fe) and different proportions of Co-doped MIL-53(Fe) were prepared by a hydrothermal method. The structural characterization and elemental analysis showed that the Co ions were successfully doped into MIL-53(Fe) to form a MIL-53(Fe/Co) bimetallic MOF, and the morphology of MIL-53(Fe/Co) became more regular after Co doping. We found that the optimized MIL-53(Fe/Co) exhibits remarkable 2e<small><sup>−</sup></small> WOR performance, which gave an overpotential of 150 mV at 1 mA cm<small><sup>−2</sup></small>. The overpotential of MIL-53(Fe/Co) was approximately 220 mV (at 1 mA cm<small><sup>−2</sup></small>) lower than that of MIL-53(Fe), which may be attributed to the change of microstructure of MIL-53(Fe) after Co doping and the synergistic effect between Fe/Co. Our work introduces a strategy for designing bimetallic MOF-based electrocatalysts, opening up new possibilities for efficient 2e<small><sup>−</sup></small> WOR systems.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00477a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Open circuit voltage of an all-vanadium redox flow battery as a function of the state of charge obtained from UV-Vis spectroscopy† 全钒氧化还原液流电池的开路电压与紫外可见光谱法得出的电荷状态的函数关系
IF 3.2
Energy advances Pub Date : 2024-09-13 DOI: 10.1039/D4YA00360H
Jana Heiß and Maximilian Kohns
{"title":"Open circuit voltage of an all-vanadium redox flow battery as a function of the state of charge obtained from UV-Vis spectroscopy†","authors":"Jana Heiß and Maximilian Kohns","doi":"10.1039/D4YA00360H","DOIUrl":"10.1039/D4YA00360H","url":null,"abstract":"<p >A unique feature of redox flow batteries (RFBs) is that their open circuit voltage (OCV) depends strongly on the state of charge (SOC). In the present work, this relation is investigated experimentally for the all-vanadium RFB (AVRFB), which uses vanadium ions of different oxidation states as redox pairs in both half-cells. In contrast to several literature studies, which use OCV measurements to deduce the SOC <em>via</em> the Nernst equation, we propose a method based on UV-Vis spectroscopy for SOC estimation, thereby enabling completely independent SOC and OCV measurements. Moreover, rather than relying on data at a single wavelength this UV-Vis method uses the entire absorption spectrum to obtain more robust values for the SOC. The obtained SOC-OCV data agree reasonably well with literature values and reveal a significant influence of the thermodynamic non-ideality of the solutions on the OCV as described by the Nernst equation.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00360h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of N-doped zeolite-templated carbons via depolymerized oligomer filling: applications in EDLC electrodes† 通过解聚低聚物填充合成掺杂 N 的沸石模板碳:在 EDLC 电极中的应用
IF 3.2
Energy advances Pub Date : 2024-09-12 DOI: 10.1039/D4YA00400K
Hiroyuki Itoi, Chika Matsuoka, Ginga Saeki, Hiroyuki Iwata, Shinichiroh Iwamura, Keigo Wakabayashi, Takeharu Yoshii, Hirotomo Nishihara and Yoshimi Ohzawa
{"title":"Synthesis of N-doped zeolite-templated carbons via depolymerized oligomer filling: applications in EDLC electrodes†","authors":"Hiroyuki Itoi, Chika Matsuoka, Ginga Saeki, Hiroyuki Iwata, Shinichiroh Iwamura, Keigo Wakabayashi, Takeharu Yoshii, Hirotomo Nishihara and Yoshimi Ohzawa","doi":"10.1039/D4YA00400K","DOIUrl":"10.1039/D4YA00400K","url":null,"abstract":"<p >Zeolite-templated carbons (ZTCs) are widely studied from basic research to applied research owing to their characteristic pore structures. To synthesize ZTCs, molecules with a size smaller than the pore sizes of template zeolites have been used as carbon sources for their carbonization in the zeolite pores. Therefore, the type of carbon sources has been limited to molecules with a size smaller than the pore sizes of zeolites. In this study, highly structurally regular N-doped zeolite-templated carbons are synthesized using propylene as a carbon source and chitin as both carbon and nitrogen sources <em>via</em> a depolymerized oligomer filling (DOF) mechanism. Chitin, the second most abundant biopolymer on the Earth, consists of <em>N</em>-acetylglucosamine (GlcNAc) as its unit structure and has a much larger size than the zeolite pores. NaY zeolite is used as a template without drying and mixed with chitin. The mixture is subjected to chemical vapor deposition (CVD) using propylene and subsequent heat treatment for graphitization, followed by HF etching for zeolite removal. Upon heating the mixture of the zeolite and chitin, chitin is catalytically depolymerized into chitin oligosaccharide radicals by the zeolite, and the radicals are absorbed into the zeolite pores below 450 °C, which is supported by electron spin resonance and N<small><sub>2</sub></small> adsorption/desorption analyses. The ZTC structure is completed by propylene CVD for adequately filling carbon into the zeolite pores. A validation experiment is conducted using GlcNAc instead of chitin to confirm that the N-doped ZTC is synthesized <em>via</em> the DOF mechanism. The resulting N-doped ZTCs have high structural regularity and high surface areas ranging from 3420 to 3740 m<small><sup>2</sup></small> g<small><sup>−1</sup></small>, and show a higher area-normalized capacitance than undoped ZTC as electric double-layer capacitor electrodes. Utilizing chitin from crustacean shells as one of the raw materials highlights an innovative approach to waste reduction and advances sustainable materials science, contributing to the circular economy and sustainable development goals.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00400k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ag–NiP deposited green carbon channel embedded NiP panels for sustainable water splitting† 用于可持续水分离的 Ag-NiP 沉积绿色碳通道嵌入式 NiP 面板
IF 3.2
Energy advances Pub Date : 2024-09-12 DOI: 10.1039/D4YA00463A
Revathy B. Nair, A. Anantha Krishnan, Aneesh Kumar M. A., Sivaraj Rajendran, Sreehari Harikumar, Vidhya C., M. Ameen Sha, Thomas Mathew, Sajith Kurian and P. S. Arun
{"title":"Ag–NiP deposited green carbon channel embedded NiP panels for sustainable water splitting†","authors":"Revathy B. Nair, A. Anantha Krishnan, Aneesh Kumar M. A., Sivaraj Rajendran, Sreehari Harikumar, Vidhya C., M. Ameen Sha, Thomas Mathew, Sajith Kurian and P. S. Arun","doi":"10.1039/D4YA00463A","DOIUrl":"10.1039/D4YA00463A","url":null,"abstract":"<p >Ag–NiP-deposited carbon channels on NiP panels were successfully developed through lemon juice extract (Ag–CL/NiP) and citric acid (Ag–CC/NiP)-assisted methodologies. The methods involved the precise execution of electroless deposition of the advanced Ag–carbon matrix with NiP. The lemon juice-assisted method produced carbon channels with a dense concentration of Ag–NiP on the electrode surface, whereas the citric acid method resulted in a less dense deposition of Ag–NiP on the electrode surface, as observed <em>via</em> FE-SEM. The Ag–CL/NiP has remarkably higher electro- and photocatalytic water splitting performance due to the compact and conductive Ag–NiP connected with carbon channels. Electrochemical impedance analysis of Ag–CL/NiP revealed a low <em>R</em><small><sub>ct</sub></small> of 491.3 Ω at the open circuit potential, indicating enhanced conductivity. The electrocatalytic oxygen evolution reaction (OER) overpotential of Ag–CL/NiP was 401 mV to achieve a current density of 50 mA cm<small><sup>−2</sup></small>, with a Tafel slope of 46.5 mV dec<small><sup>−1</sup></small>. The panel exhibited good stability, with a proven durability of over 1000 cycles of CV during OER. The developed panel achieved an impressive photocurrent density of ∼9.5 mA cm<small><sup>−2</sup></small> at 1.37 V <em>vs.</em> RHE when subjected to light irradiation with a wavelength exceeding 420 nm. Furthermore, the Ag–CL/NiP panel demonstrated the ability to generate 17.5 mmol cm<small><sup>−2</sup></small> of H<small><sub>2</sub></small> over a 4-hour sunlight irradiation period. The temperature-controlled photocatalytic water splitting experiment revealed that the panel maintained its activity at temperatures as low as ∼12 °C, but with a 40% drop in efficiency compared to normal sunlight conditions.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ya/d4ya00463a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信