{"title":"尿素驱动水热合成Mn2O3:超级电容器在不同电解质中的电化学性能","authors":"Alisha Dhakal, Felio Perez and Sanjay R Mishra","doi":"10.1039/D5YA00040H","DOIUrl":null,"url":null,"abstract":"<p >In this study, cubic Mn<small><sub>2</sub></small>O<small><sub>3</sub></small> was synthesized using different urea concentrations (3, 6, 9, and 12 mM) <em>via</em> a hydrothermal method. During synthesis, an increase in urea content resulted in decreased particle and crystallite sizes and increased lattice parameters, with a concomitant increase in the surface area and number of Mn<small><sup>3+</sup></small> ions in Mn<small><sub>2</sub></small>O<small><sub>3</sub></small> particles. The electrochemical performance of the Mn<small><sub>2</sub></small>O<small><sub>3</sub></small>-9 mM urea sample outperformed samples prepared with other urea contents. The Mn<small><sub>2</sub></small>O<small><sub>3</sub></small>-9 mM urea sample exhibited high specific capacitance (<em>C</em><small><sub>sp</sub></small>) values in 1 M and 3 M KOH electrolytes, achieving 881.3 F g<small><sup>−1</sup></small> and 1043.2 F g<small><sup>−1</sup></small>, respectively, at a scan rate of 1 mV s<small><sup>−1</sup></small>. Furthermore, at a current density of 1 A g<small><sup>−1</sup></small>, the <em>C</em><small><sub>sp</sub></small> of Mn<small><sub>2</sub></small>O<small><sub>3</sub></small> in 1 M KOH was 758.5 F g<small><sup>−1</sup></small>. The values increased to 891.4 F g<small><sup>−1</sup></small> with energy density and power density of 44.7 W h kg<small><sup>−1</sup></small> and 398.1 W kg<small><sup>−1</sup></small>, respectively, in 3 M KOH. Owing to the superior electrochemical performance of the Mn<small><sub>2</sub></small>O<small><sub>3</sub></small>-9 mM urea sample, its electrochemical performance was assessed in basic KOH and NaOH and neutral Na<small><sub>2</sub></small>SO<small><sub>4</sub></small> and NaNO<small><sub>3</sub></small> aqueous electrolytes. Moreover, the Mn<small><sub>2</sub></small>O<small><sub>3</sub></small>-9 mM urea sample demonstrated a <em>C</em><small><sub>sp</sub></small> of 721.0 and 446.3 F g<small><sup>−1</sup></small> in 3 M concentrations of NaOH and NaNO<small><sub>3</sub></small> electrolytes, respectively. The Mn<small><sub>2</sub></small>O<small><sub>3</sub></small>-9 mM urea sample with the highest content of Mn<small><sup>3+</sup></small> ions displayed the highest <em>C</em><small><sub>sp</sub></small> in KOH electrolytes compared with the others owing to the smaller hydration radii of K<small><sup>+</sup></small> and high ionic diffusivity and conductivity of OH<small><sup>−</sup></small> compared with other basic and neutral salts. These results highlight that the synthesis process, electrolyte choice, and concentration of electrolytes significantly influence the electrochemical properties of Mn<small><sub>2</sub></small>O<small><sub>3</sub></small> battery-type, emphasizing their critical role in optimizing material performance for supercapacitor applications.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 7","pages":" 878-895"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d5ya00040h?page=search","citationCount":"0","resultStr":"{\"title\":\"Urea-driven hydrothermal synthesis of Mn2O3: electrochemical performance across various electrolytes for supercapacitor applications\",\"authors\":\"Alisha Dhakal, Felio Perez and Sanjay R Mishra\",\"doi\":\"10.1039/D5YA00040H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In this study, cubic Mn<small><sub>2</sub></small>O<small><sub>3</sub></small> was synthesized using different urea concentrations (3, 6, 9, and 12 mM) <em>via</em> a hydrothermal method. During synthesis, an increase in urea content resulted in decreased particle and crystallite sizes and increased lattice parameters, with a concomitant increase in the surface area and number of Mn<small><sup>3+</sup></small> ions in Mn<small><sub>2</sub></small>O<small><sub>3</sub></small> particles. The electrochemical performance of the Mn<small><sub>2</sub></small>O<small><sub>3</sub></small>-9 mM urea sample outperformed samples prepared with other urea contents. The Mn<small><sub>2</sub></small>O<small><sub>3</sub></small>-9 mM urea sample exhibited high specific capacitance (<em>C</em><small><sub>sp</sub></small>) values in 1 M and 3 M KOH electrolytes, achieving 881.3 F g<small><sup>−1</sup></small> and 1043.2 F g<small><sup>−1</sup></small>, respectively, at a scan rate of 1 mV s<small><sup>−1</sup></small>. Furthermore, at a current density of 1 A g<small><sup>−1</sup></small>, the <em>C</em><small><sub>sp</sub></small> of Mn<small><sub>2</sub></small>O<small><sub>3</sub></small> in 1 M KOH was 758.5 F g<small><sup>−1</sup></small>. The values increased to 891.4 F g<small><sup>−1</sup></small> with energy density and power density of 44.7 W h kg<small><sup>−1</sup></small> and 398.1 W kg<small><sup>−1</sup></small>, respectively, in 3 M KOH. Owing to the superior electrochemical performance of the Mn<small><sub>2</sub></small>O<small><sub>3</sub></small>-9 mM urea sample, its electrochemical performance was assessed in basic KOH and NaOH and neutral Na<small><sub>2</sub></small>SO<small><sub>4</sub></small> and NaNO<small><sub>3</sub></small> aqueous electrolytes. Moreover, the Mn<small><sub>2</sub></small>O<small><sub>3</sub></small>-9 mM urea sample demonstrated a <em>C</em><small><sub>sp</sub></small> of 721.0 and 446.3 F g<small><sup>−1</sup></small> in 3 M concentrations of NaOH and NaNO<small><sub>3</sub></small> electrolytes, respectively. The Mn<small><sub>2</sub></small>O<small><sub>3</sub></small>-9 mM urea sample with the highest content of Mn<small><sup>3+</sup></small> ions displayed the highest <em>C</em><small><sub>sp</sub></small> in KOH electrolytes compared with the others owing to the smaller hydration radii of K<small><sup>+</sup></small> and high ionic diffusivity and conductivity of OH<small><sup>−</sup></small> compared with other basic and neutral salts. These results highlight that the synthesis process, electrolyte choice, and concentration of electrolytes significantly influence the electrochemical properties of Mn<small><sub>2</sub></small>O<small><sub>3</sub></small> battery-type, emphasizing their critical role in optimizing material performance for supercapacitor applications.</p>\",\"PeriodicalId\":72913,\"journal\":{\"name\":\"Energy advances\",\"volume\":\" 7\",\"pages\":\" 878-895\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d5ya00040h?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ya/d5ya00040h\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ya/d5ya00040h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
在本研究中,采用水热法合成了不同尿素浓度(3、6、9和12 mM)的立方Mn2O3。在合成过程中,尿素含量的增加导致颗粒和晶体尺寸减小,晶格参数增加,同时Mn2O3颗粒的表面积和Mn3+离子数量增加。mn2o3 - 9mm尿素样品的电化学性能优于其他尿素含量制备的样品。mn2o3 - 9mm尿素样品在1 M和3 M KOH电解质中表现出较高的比电容(Csp)值,扫描速率为1 mV s−1时,分别达到881.3 F g−1和1043.2 F g−1。当电流密度为1 a g−1时,Mn2O3在1 M KOH中的Csp值为758.5 F g−1。在3 M KOH条件下,能量密度和功率密度分别为44.7 W h kg - 1和398.1 W kg - 1,能量密度增加到891.4 F g - 1。由于mn2o3 - 9mm尿素样品具有优异的电化学性能,对其在碱性KOH和NaOH以及中性Na2SO4和NaNO3水溶液中的电化学性能进行了评价。此外,mn2o3 - 9mm尿素样品在3 M NaOH和NaNO3电解质浓度下的Csp分别为721.0和446.3 F g−1。Mn3+离子含量最高的mn2o3 - 9mm尿素样品在KOH电解质中表现出最高的Csp,这是由于与其他碱性盐和中性盐相比,K+的水化半径较小,OH -的离子扩散率和电导率较高。这些结果强调了合成工艺、电解质选择和电解质浓度对Mn2O3电池类型的电化学性能有显著影响,强调了它们在优化超级电容器材料性能方面的关键作用。
Urea-driven hydrothermal synthesis of Mn2O3: electrochemical performance across various electrolytes for supercapacitor applications
In this study, cubic Mn2O3 was synthesized using different urea concentrations (3, 6, 9, and 12 mM) via a hydrothermal method. During synthesis, an increase in urea content resulted in decreased particle and crystallite sizes and increased lattice parameters, with a concomitant increase in the surface area and number of Mn3+ ions in Mn2O3 particles. The electrochemical performance of the Mn2O3-9 mM urea sample outperformed samples prepared with other urea contents. The Mn2O3-9 mM urea sample exhibited high specific capacitance (Csp) values in 1 M and 3 M KOH electrolytes, achieving 881.3 F g−1 and 1043.2 F g−1, respectively, at a scan rate of 1 mV s−1. Furthermore, at a current density of 1 A g−1, the Csp of Mn2O3 in 1 M KOH was 758.5 F g−1. The values increased to 891.4 F g−1 with energy density and power density of 44.7 W h kg−1 and 398.1 W kg−1, respectively, in 3 M KOH. Owing to the superior electrochemical performance of the Mn2O3-9 mM urea sample, its electrochemical performance was assessed in basic KOH and NaOH and neutral Na2SO4 and NaNO3 aqueous electrolytes. Moreover, the Mn2O3-9 mM urea sample demonstrated a Csp of 721.0 and 446.3 F g−1 in 3 M concentrations of NaOH and NaNO3 electrolytes, respectively. The Mn2O3-9 mM urea sample with the highest content of Mn3+ ions displayed the highest Csp in KOH electrolytes compared with the others owing to the smaller hydration radii of K+ and high ionic diffusivity and conductivity of OH− compared with other basic and neutral salts. These results highlight that the synthesis process, electrolyte choice, and concentration of electrolytes significantly influence the electrochemical properties of Mn2O3 battery-type, emphasizing their critical role in optimizing material performance for supercapacitor applications.