Shokat Hussain, Raheela Akhter, Numan Maroof Butt, Srinibas Beura, S. M. Nizam Uddin and Shrikant S. Maktedar
{"title":"表面工程碳纳米结构作为高性能析氢反应可持续探针的方法进展","authors":"Shokat Hussain, Raheela Akhter, Numan Maroof Butt, Srinibas Beura, S. M. Nizam Uddin and Shrikant S. Maktedar","doi":"10.1039/D4YA00609G","DOIUrl":null,"url":null,"abstract":"<p >In the pursuit of sustainable energy solutions, the development of efficient and environmentally friendly catalysts is crucial. This study focuses on the design and synthesis of Rh@GO electrocatalysts for energy conversion processes, particularly the hydrogen evolution reaction (HER). We introduce three innovative preparation methods: conventional (Rh@GO-SN), solvothermal (Rh@GO-ST), and pyrolysis (Rh@GO-PY). Each method utilizes ultralow amounts of rhodium under distinct conditions of heat and pressure to achieve optimal performance. Rhodium nanostructures are renowned for their exceptional stability, selectivity, and catalytic activity, presenting a promising alternative to traditional platinum-based electrocatalysts. Our results indicate that the synthesized Rh@GO catalysts exhibit significantly enhanced electrocatalytic performance in acidic media for the hydrogen evolution reaction. Key performance metrics include increased current density, reduced overpotential, reduced Tafel slope, and improved stability and durability. Notably, the Rh@GO-PY and Rh@GO-ST catalysts achieve overpotentials of just 31 mV and 38 mV, respectively, at a current density of 10 mA cm<small><sup>−2</sup></small>. This performance surpasses that of the benchmark Pt/C catalyst, which requires an overpotential of 59 mV to reach the same current density.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 7","pages":" 930-946"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00609g?page=search","citationCount":"0","resultStr":"{\"title\":\"Methodological advances for the development of surface engineered carbon nanoarchitectures as a sustainable probe towards high performance hydrogen evolution reaction†\",\"authors\":\"Shokat Hussain, Raheela Akhter, Numan Maroof Butt, Srinibas Beura, S. M. Nizam Uddin and Shrikant S. Maktedar\",\"doi\":\"10.1039/D4YA00609G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In the pursuit of sustainable energy solutions, the development of efficient and environmentally friendly catalysts is crucial. This study focuses on the design and synthesis of Rh@GO electrocatalysts for energy conversion processes, particularly the hydrogen evolution reaction (HER). We introduce three innovative preparation methods: conventional (Rh@GO-SN), solvothermal (Rh@GO-ST), and pyrolysis (Rh@GO-PY). Each method utilizes ultralow amounts of rhodium under distinct conditions of heat and pressure to achieve optimal performance. Rhodium nanostructures are renowned for their exceptional stability, selectivity, and catalytic activity, presenting a promising alternative to traditional platinum-based electrocatalysts. Our results indicate that the synthesized Rh@GO catalysts exhibit significantly enhanced electrocatalytic performance in acidic media for the hydrogen evolution reaction. Key performance metrics include increased current density, reduced overpotential, reduced Tafel slope, and improved stability and durability. Notably, the Rh@GO-PY and Rh@GO-ST catalysts achieve overpotentials of just 31 mV and 38 mV, respectively, at a current density of 10 mA cm<small><sup>−2</sup></small>. This performance surpasses that of the benchmark Pt/C catalyst, which requires an overpotential of 59 mV to reach the same current density.</p>\",\"PeriodicalId\":72913,\"journal\":{\"name\":\"Energy advances\",\"volume\":\" 7\",\"pages\":\" 930-946\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00609g?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ya/d4ya00609g\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ya/d4ya00609g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
在寻求可持续能源解决方案的过程中,开发高效环保的催化剂至关重要。本研究的重点是设计和合成Rh@GO电催化剂的能量转换过程,特别是析氢反应(HER)。我们介绍了三种创新的制备方法:常规(Rh@GO-SN),溶剂热(Rh@GO-ST)和热解(Rh@GO-PY)。每种方法都在不同的热和压力条件下使用超低量的铑,以达到最佳性能。铑纳米结构以其卓越的稳定性、选择性和催化活性而闻名,是传统铂基电催化剂的一个有希望的替代品。结果表明,合成的Rh@GO催化剂在酸性介质中对析氢反应表现出明显增强的电催化性能。关键性能指标包括增加电流密度、降低过电位、降低塔菲尔斜率、提高稳定性和耐用性。值得注意的是,Rh@GO-PY和Rh@GO-ST催化剂在电流密度为10 mA cm−2时,分别达到了31 mV和38 mV的过电位。这一性能超过了基准Pt/C催化剂,后者需要59 mV的过电位才能达到相同的电流密度。
Methodological advances for the development of surface engineered carbon nanoarchitectures as a sustainable probe towards high performance hydrogen evolution reaction†
In the pursuit of sustainable energy solutions, the development of efficient and environmentally friendly catalysts is crucial. This study focuses on the design and synthesis of Rh@GO electrocatalysts for energy conversion processes, particularly the hydrogen evolution reaction (HER). We introduce three innovative preparation methods: conventional (Rh@GO-SN), solvothermal (Rh@GO-ST), and pyrolysis (Rh@GO-PY). Each method utilizes ultralow amounts of rhodium under distinct conditions of heat and pressure to achieve optimal performance. Rhodium nanostructures are renowned for their exceptional stability, selectivity, and catalytic activity, presenting a promising alternative to traditional platinum-based electrocatalysts. Our results indicate that the synthesized Rh@GO catalysts exhibit significantly enhanced electrocatalytic performance in acidic media for the hydrogen evolution reaction. Key performance metrics include increased current density, reduced overpotential, reduced Tafel slope, and improved stability and durability. Notably, the Rh@GO-PY and Rh@GO-ST catalysts achieve overpotentials of just 31 mV and 38 mV, respectively, at a current density of 10 mA cm−2. This performance surpasses that of the benchmark Pt/C catalyst, which requires an overpotential of 59 mV to reach the same current density.