Methodological advances for the development of surface engineered carbon nanoarchitectures as a sustainable probe towards high performance hydrogen evolution reaction†
Shokat Hussain, Raheela Akhter, Numan Maroof Butt, Srinibas Beura, S. M. Nizam Uddin and Shrikant S. Maktedar
{"title":"Methodological advances for the development of surface engineered carbon nanoarchitectures as a sustainable probe towards high performance hydrogen evolution reaction†","authors":"Shokat Hussain, Raheela Akhter, Numan Maroof Butt, Srinibas Beura, S. M. Nizam Uddin and Shrikant S. Maktedar","doi":"10.1039/D4YA00609G","DOIUrl":null,"url":null,"abstract":"<p >In the pursuit of sustainable energy solutions, the development of efficient and environmentally friendly catalysts is crucial. This study focuses on the design and synthesis of Rh@GO electrocatalysts for energy conversion processes, particularly the hydrogen evolution reaction (HER). We introduce three innovative preparation methods: conventional (Rh@GO-SN), solvothermal (Rh@GO-ST), and pyrolysis (Rh@GO-PY). Each method utilizes ultralow amounts of rhodium under distinct conditions of heat and pressure to achieve optimal performance. Rhodium nanostructures are renowned for their exceptional stability, selectivity, and catalytic activity, presenting a promising alternative to traditional platinum-based electrocatalysts. Our results indicate that the synthesized Rh@GO catalysts exhibit significantly enhanced electrocatalytic performance in acidic media for the hydrogen evolution reaction. Key performance metrics include increased current density, reduced overpotential, reduced Tafel slope, and improved stability and durability. Notably, the Rh@GO-PY and Rh@GO-ST catalysts achieve overpotentials of just 31 mV and 38 mV, respectively, at a current density of 10 mA cm<small><sup>−2</sup></small>. This performance surpasses that of the benchmark Pt/C catalyst, which requires an overpotential of 59 mV to reach the same current density.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 7","pages":" 930-946"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d4ya00609g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ya/d4ya00609g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the pursuit of sustainable energy solutions, the development of efficient and environmentally friendly catalysts is crucial. This study focuses on the design and synthesis of Rh@GO electrocatalysts for energy conversion processes, particularly the hydrogen evolution reaction (HER). We introduce three innovative preparation methods: conventional (Rh@GO-SN), solvothermal (Rh@GO-ST), and pyrolysis (Rh@GO-PY). Each method utilizes ultralow amounts of rhodium under distinct conditions of heat and pressure to achieve optimal performance. Rhodium nanostructures are renowned for their exceptional stability, selectivity, and catalytic activity, presenting a promising alternative to traditional platinum-based electrocatalysts. Our results indicate that the synthesized Rh@GO catalysts exhibit significantly enhanced electrocatalytic performance in acidic media for the hydrogen evolution reaction. Key performance metrics include increased current density, reduced overpotential, reduced Tafel slope, and improved stability and durability. Notably, the Rh@GO-PY and Rh@GO-ST catalysts achieve overpotentials of just 31 mV and 38 mV, respectively, at a current density of 10 mA cm−2. This performance surpasses that of the benchmark Pt/C catalyst, which requires an overpotential of 59 mV to reach the same current density.