Friedrich B. Jasper, Manuel Baumann, Milosch Stumpf, Andreas Husmann, Bernhard Riegel, Stefano Passerini and Marcel Weil
{"title":"Full life cycle assessment of an industrial lead–acid battery based on primary data†","authors":"Friedrich B. Jasper, Manuel Baumann, Milosch Stumpf, Andreas Husmann, Bernhard Riegel, Stefano Passerini and Marcel Weil","doi":"10.1039/D5YA00057B","DOIUrl":null,"url":null,"abstract":"<p >Although lead–acid batteries (LABs) often act as a reference system to environmentally assess existing and emerging storage technologies, no study on the environmental impact of LABs based on primary data from Europe or North America since 2010 could be found. All available studies assessing LABs in Europe rely on literature values from the same few outdated sources, further decreasing reliability. To close this research gap, this work provides a cradle-to-grave life cycle assessment (LCA) of an industrial LAB based on up-to-date primary data provided by the German manufacturer Hoppecke Batterien GmbH. The analysis of potential environmental impacts includes all three phases: production, use and end-of-life (EOL), and analyses potential environmental impacts. The impacts are compared to those of a state-of-the-art lithium iron phosphate (LFP) battery in two different use cases: data centre and home storage system (HSS), in order to highlight the influence of selected use cases on overall results. The results show that the combination of the production and EOL phases of the LAB have a lower environmental impact in the majority of categories than the same two phases of the LFP battery. Including the use phase, the results diverge strongly depending on the use case. From an LCA point of view, while the LAB is potentially the better environmental choice for a data centre (with few charge/discharge cycles), an LFP battery should be used in applications with many charge/discharge cycles, like in an HSS. This indicates that batteries always need to be investigated and compared on an application-specific basis.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 7","pages":" 910-929"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d5ya00057b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ya/d5ya00057b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Although lead–acid batteries (LABs) often act as a reference system to environmentally assess existing and emerging storage technologies, no study on the environmental impact of LABs based on primary data from Europe or North America since 2010 could be found. All available studies assessing LABs in Europe rely on literature values from the same few outdated sources, further decreasing reliability. To close this research gap, this work provides a cradle-to-grave life cycle assessment (LCA) of an industrial LAB based on up-to-date primary data provided by the German manufacturer Hoppecke Batterien GmbH. The analysis of potential environmental impacts includes all three phases: production, use and end-of-life (EOL), and analyses potential environmental impacts. The impacts are compared to those of a state-of-the-art lithium iron phosphate (LFP) battery in two different use cases: data centre and home storage system (HSS), in order to highlight the influence of selected use cases on overall results. The results show that the combination of the production and EOL phases of the LAB have a lower environmental impact in the majority of categories than the same two phases of the LFP battery. Including the use phase, the results diverge strongly depending on the use case. From an LCA point of view, while the LAB is potentially the better environmental choice for a data centre (with few charge/discharge cycles), an LFP battery should be used in applications with many charge/discharge cycles, like in an HSS. This indicates that batteries always need to be investigated and compared on an application-specific basis.