Shunjian Xu, Ping Huang, Wei Zhong, Yongping Luo, Haiyan Fu, Zonghu Xiao, Hong Jin and Yike Liu
{"title":"使用天然染料和天然碳对电极†的可再生花基染料敏化太阳能电池","authors":"Shunjian Xu, Ping Huang, Wei Zhong, Yongping Luo, Haiyan Fu, Zonghu Xiao, Hong Jin and Yike Liu","doi":"10.1039/D5YA00086F","DOIUrl":null,"url":null,"abstract":"<p >To advance the application of renewable biowaste in the renewable energy field, biowaste-derived natural dyes (BND) and biowaste-derived carbon materials (BCM) were individually prepared from five common flowers as raw materials and then facilely integrated into dye-sensitized solar cells (DSSCs). The five extracted BNDs contained anthocyanins with subtly different molecular structures, which were employed as photosensitizers to assemble mono-biowaste based devices with a Pt counter electrode, each of which showed a significantly different conversion efficiency (<em>η</em>), varying from 0.17% to 0.43%. The five pyrolyzed BCMs with an amorphous structure were used as counter electrodes to configure mono-biowaste based devices with the photosensitizer N719, and their <em>η</em> values ranged between 1.08% and 2.13%. The high efficiency of the BCM-based devices was mainly derived from their unique microstructure and the <em>N</em>,<em>S</em>-codoped oxygen-group-containing carbon skeleton of the BCM, which provided more catalytic active sites for reduction of the electrolyte. A dual-biowaste device based on crape myrtle violet flower with an <em>η</em> of 0.181% was finally fabricated by using the corresponding BND and BCM. Moreover, a combination strategy was carried out by introducing the BND extracted from willow leaf into the cell with the pyrolyzed crape myrtle violet flower BCM, resulting in an enhanced <em>η</em> of 0.32%.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 7","pages":" 947-957"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d5ya00086f?page=search","citationCount":"0","resultStr":"{\"title\":\"Renewable flower-based dye-sensitized solar cells using natural dye and natural carbon counter electrode†\",\"authors\":\"Shunjian Xu, Ping Huang, Wei Zhong, Yongping Luo, Haiyan Fu, Zonghu Xiao, Hong Jin and Yike Liu\",\"doi\":\"10.1039/D5YA00086F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >To advance the application of renewable biowaste in the renewable energy field, biowaste-derived natural dyes (BND) and biowaste-derived carbon materials (BCM) were individually prepared from five common flowers as raw materials and then facilely integrated into dye-sensitized solar cells (DSSCs). The five extracted BNDs contained anthocyanins with subtly different molecular structures, which were employed as photosensitizers to assemble mono-biowaste based devices with a Pt counter electrode, each of which showed a significantly different conversion efficiency (<em>η</em>), varying from 0.17% to 0.43%. The five pyrolyzed BCMs with an amorphous structure were used as counter electrodes to configure mono-biowaste based devices with the photosensitizer N719, and their <em>η</em> values ranged between 1.08% and 2.13%. The high efficiency of the BCM-based devices was mainly derived from their unique microstructure and the <em>N</em>,<em>S</em>-codoped oxygen-group-containing carbon skeleton of the BCM, which provided more catalytic active sites for reduction of the electrolyte. A dual-biowaste device based on crape myrtle violet flower with an <em>η</em> of 0.181% was finally fabricated by using the corresponding BND and BCM. Moreover, a combination strategy was carried out by introducing the BND extracted from willow leaf into the cell with the pyrolyzed crape myrtle violet flower BCM, resulting in an enhanced <em>η</em> of 0.32%.</p>\",\"PeriodicalId\":72913,\"journal\":{\"name\":\"Energy advances\",\"volume\":\" 7\",\"pages\":\" 947-957\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d5ya00086f?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ya/d5ya00086f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ya/d5ya00086f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Renewable flower-based dye-sensitized solar cells using natural dye and natural carbon counter electrode†
To advance the application of renewable biowaste in the renewable energy field, biowaste-derived natural dyes (BND) and biowaste-derived carbon materials (BCM) were individually prepared from five common flowers as raw materials and then facilely integrated into dye-sensitized solar cells (DSSCs). The five extracted BNDs contained anthocyanins with subtly different molecular structures, which were employed as photosensitizers to assemble mono-biowaste based devices with a Pt counter electrode, each of which showed a significantly different conversion efficiency (η), varying from 0.17% to 0.43%. The five pyrolyzed BCMs with an amorphous structure were used as counter electrodes to configure mono-biowaste based devices with the photosensitizer N719, and their η values ranged between 1.08% and 2.13%. The high efficiency of the BCM-based devices was mainly derived from their unique microstructure and the N,S-codoped oxygen-group-containing carbon skeleton of the BCM, which provided more catalytic active sites for reduction of the electrolyte. A dual-biowaste device based on crape myrtle violet flower with an η of 0.181% was finally fabricated by using the corresponding BND and BCM. Moreover, a combination strategy was carried out by introducing the BND extracted from willow leaf into the cell with the pyrolyzed crape myrtle violet flower BCM, resulting in an enhanced η of 0.32%.