{"title":"Oxygen vacancy assisted hydrogen evolution reaction over CeO2-based solid solutions","authors":"Saraswati Roy and Sounak Roy","doi":"10.1039/D5YA00027K","DOIUrl":null,"url":null,"abstract":"<p >Producing sustainable hydrogen through water electrolysis is a promising approach to meet the growing demand for renewable energy storage. Developing affordable and efficient electrocatalysts made from non-precious metals to replace platinum-based catalysts for hydrogen evolution reactions (HERs) continues to be a significant challenge. In the present study, pristine CeO<small><sub>2</sub></small> and doped solid solutions Ce<small><sub>0.95</sub></small>Co<small><sub>0.05</sub></small>O<small><sub>2</sub></small>, Ce<small><sub>0.95</sub></small>Ni<small><sub>0.05</sub></small>O<small><sub>2</sub></small> and Ce<small><sub>0.95</sub></small>Cu<small><sub>0.05</sub></small>O<small><sub>2</sub></small> were evaluated for the HER, and the electrochemical studies in alkaline medium showed superior HER activity for the doped catalysts, with Ce<small><sub>0.95</sub></small>Ni<small><sub>0.05</sub></small>O<small><sub>2</sub></small> achieving the lowest overpotential and highest mass activity, comparable to Pt/C. Tafel slopes and EIS measurements suggested a Volmer–Heyrovsky mechanism facilitated by oxygen vacancies and hydrogen spill-over. Stability tests confirmed the durability of Ce<small><sub>0.95</sub></small>Ni<small><sub>0.05</sub></small>O<small><sub>2</sub></small> under prolonged HER conditions. This study highlights aliovalent doping as a viable strategy for engineering oxygen vacancies and enhancing CeO<small><sub>2</sub></small>-based catalysts for alkaline water electrolysis.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 7","pages":" 896-909"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d5ya00027k?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ya/d5ya00027k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Producing sustainable hydrogen through water electrolysis is a promising approach to meet the growing demand for renewable energy storage. Developing affordable and efficient electrocatalysts made from non-precious metals to replace platinum-based catalysts for hydrogen evolution reactions (HERs) continues to be a significant challenge. In the present study, pristine CeO2 and doped solid solutions Ce0.95Co0.05O2, Ce0.95Ni0.05O2 and Ce0.95Cu0.05O2 were evaluated for the HER, and the electrochemical studies in alkaline medium showed superior HER activity for the doped catalysts, with Ce0.95Ni0.05O2 achieving the lowest overpotential and highest mass activity, comparable to Pt/C. Tafel slopes and EIS measurements suggested a Volmer–Heyrovsky mechanism facilitated by oxygen vacancies and hydrogen spill-over. Stability tests confirmed the durability of Ce0.95Ni0.05O2 under prolonged HER conditions. This study highlights aliovalent doping as a viable strategy for engineering oxygen vacancies and enhancing CeO2-based catalysts for alkaline water electrolysis.