氧空位辅助ceo2固溶体上的析氢反应

IF 3.2 Q2 CHEMISTRY, PHYSICAL
Energy advances Pub Date : 2025-05-19 DOI:10.1039/D5YA00027K
Saraswati Roy and Sounak Roy
{"title":"氧空位辅助ceo2固溶体上的析氢反应","authors":"Saraswati Roy and Sounak Roy","doi":"10.1039/D5YA00027K","DOIUrl":null,"url":null,"abstract":"<p >Producing sustainable hydrogen through water electrolysis is a promising approach to meet the growing demand for renewable energy storage. Developing affordable and efficient electrocatalysts made from non-precious metals to replace platinum-based catalysts for hydrogen evolution reactions (HERs) continues to be a significant challenge. In the present study, pristine CeO<small><sub>2</sub></small> and doped solid solutions Ce<small><sub>0.95</sub></small>Co<small><sub>0.05</sub></small>O<small><sub>2</sub></small>, Ce<small><sub>0.95</sub></small>Ni<small><sub>0.05</sub></small>O<small><sub>2</sub></small> and Ce<small><sub>0.95</sub></small>Cu<small><sub>0.05</sub></small>O<small><sub>2</sub></small> were evaluated for the HER, and the electrochemical studies in alkaline medium showed superior HER activity for the doped catalysts, with Ce<small><sub>0.95</sub></small>Ni<small><sub>0.05</sub></small>O<small><sub>2</sub></small> achieving the lowest overpotential and highest mass activity, comparable to Pt/C. Tafel slopes and EIS measurements suggested a Volmer–Heyrovsky mechanism facilitated by oxygen vacancies and hydrogen spill-over. Stability tests confirmed the durability of Ce<small><sub>0.95</sub></small>Ni<small><sub>0.05</sub></small>O<small><sub>2</sub></small> under prolonged HER conditions. This study highlights aliovalent doping as a viable strategy for engineering oxygen vacancies and enhancing CeO<small><sub>2</sub></small>-based catalysts for alkaline water electrolysis.</p>","PeriodicalId":72913,"journal":{"name":"Energy advances","volume":" 7","pages":" 896-909"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d5ya00027k?page=search","citationCount":"0","resultStr":"{\"title\":\"Oxygen vacancy assisted hydrogen evolution reaction over CeO2-based solid solutions\",\"authors\":\"Saraswati Roy and Sounak Roy\",\"doi\":\"10.1039/D5YA00027K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Producing sustainable hydrogen through water electrolysis is a promising approach to meet the growing demand for renewable energy storage. Developing affordable and efficient electrocatalysts made from non-precious metals to replace platinum-based catalysts for hydrogen evolution reactions (HERs) continues to be a significant challenge. In the present study, pristine CeO<small><sub>2</sub></small> and doped solid solutions Ce<small><sub>0.95</sub></small>Co<small><sub>0.05</sub></small>O<small><sub>2</sub></small>, Ce<small><sub>0.95</sub></small>Ni<small><sub>0.05</sub></small>O<small><sub>2</sub></small> and Ce<small><sub>0.95</sub></small>Cu<small><sub>0.05</sub></small>O<small><sub>2</sub></small> were evaluated for the HER, and the electrochemical studies in alkaline medium showed superior HER activity for the doped catalysts, with Ce<small><sub>0.95</sub></small>Ni<small><sub>0.05</sub></small>O<small><sub>2</sub></small> achieving the lowest overpotential and highest mass activity, comparable to Pt/C. Tafel slopes and EIS measurements suggested a Volmer–Heyrovsky mechanism facilitated by oxygen vacancies and hydrogen spill-over. Stability tests confirmed the durability of Ce<small><sub>0.95</sub></small>Ni<small><sub>0.05</sub></small>O<small><sub>2</sub></small> under prolonged HER conditions. This study highlights aliovalent doping as a viable strategy for engineering oxygen vacancies and enhancing CeO<small><sub>2</sub></small>-based catalysts for alkaline water electrolysis.</p>\",\"PeriodicalId\":72913,\"journal\":{\"name\":\"Energy advances\",\"volume\":\" 7\",\"pages\":\" 896-909\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ya/d5ya00027k?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ya/d5ya00027k\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ya/d5ya00027k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过水电解生产可持续氢气是满足日益增长的可再生能源存储需求的一种有前途的方法。开发价格合理且高效的非贵金属电催化剂来取代铂基催化剂用于析氢反应(HERs)仍然是一个重大挑战。在本研究中,对纯净的CeO2和掺杂的固溶体Ce0.95Co0.05O2、Ce0.95Ni0.05O2和Ce0.95Cu0.05O2进行了HER评价,在碱性介质中的电化学研究表明,掺杂的催化剂具有较好的HER活性,Ce0.95Ni0.05O2的过电位最低,质量活性最高,与Pt/C相当。Tafel斜率和EIS测量表明,氧空位和氢溢出促进了Volmer-Heyrovsky机制。稳定性试验证实了Ce0.95Ni0.05O2在长时间HER条件下的耐久性。这项研究强调了共价掺杂是一种可行的策略,用于工程氧空位和增强碱性水电解中基于ceo2的催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Oxygen vacancy assisted hydrogen evolution reaction over CeO2-based solid solutions

Oxygen vacancy assisted hydrogen evolution reaction over CeO2-based solid solutions

Producing sustainable hydrogen through water electrolysis is a promising approach to meet the growing demand for renewable energy storage. Developing affordable and efficient electrocatalysts made from non-precious metals to replace platinum-based catalysts for hydrogen evolution reactions (HERs) continues to be a significant challenge. In the present study, pristine CeO2 and doped solid solutions Ce0.95Co0.05O2, Ce0.95Ni0.05O2 and Ce0.95Cu0.05O2 were evaluated for the HER, and the electrochemical studies in alkaline medium showed superior HER activity for the doped catalysts, with Ce0.95Ni0.05O2 achieving the lowest overpotential and highest mass activity, comparable to Pt/C. Tafel slopes and EIS measurements suggested a Volmer–Heyrovsky mechanism facilitated by oxygen vacancies and hydrogen spill-over. Stability tests confirmed the durability of Ce0.95Ni0.05O2 under prolonged HER conditions. This study highlights aliovalent doping as a viable strategy for engineering oxygen vacancies and enhancing CeO2-based catalysts for alkaline water electrolysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信