Jack A Black, Daniel J Blezek, Christian R Hanson, Nic A Crudele, Andrew M Duit, David F Black, Jonathan M Morris
{"title":"3D printing of an optic pathway model from 7T MRI for education.","authors":"Jack A Black, Daniel J Blezek, Christian R Hanson, Nic A Crudele, Andrew M Duit, David F Black, Jonathan M Morris","doi":"10.1186/s41205-025-00297-4","DOIUrl":"10.1186/s41205-025-00297-4","url":null,"abstract":"<p><strong>Background: </strong>The optic pathway is a complex neural structure responsible for transmitting visual information from the retina to the brain. Traditionally, the optic pathway has been depicted using two-dimensional (2D) illustrations, which, while useful for simplification, can obscure depth, orientation, and connectivity, limiting a full understanding of its three-dimensional (3D) nature which is important for surgical planning and neuroanatomy education. Due to a convergence of advancing technologies in MRI image acquisition, medical CAD and 3D illustration software, as well as 3D printing technologies, these 3D visualizations can now be physically manufactured to provide life size, patient specific, physical, color-coded 3D models. 3D models manufactured from advanced imaging can provide a more accurate, interactive, non-invasive, cost-effective alternative to medical illustration and animation than traditional dissected cadaveric anatomical specimens for both clinical and educational purposes.</p><p><strong>Methods: </strong>The source data for this project came from both a 42 year old male patient and a 21 year old male volunteer after both had been scanned on the same seven tesla MRI including DTI for the patient and volumetric sequences for the volunteer. The model was created by segmenting the optic pathway using medical CAD software and 3D illustration software. The DTI tracts were coregistered to the anatomic brain. The model was optimized for printing and hypothetical \"lesions\" were added along the pathway with their corresponding visual deficits. The model was printed on an HP580 multijet fusion color printer and photorealistic eyes were printed using material jetting of photopolymer via a Stratasys J750 printer.</p><p><strong>Results: </strong>Multiple challenges were overcome to successfully create a life size, physical, multicolor 3D printed representation of the optic pathway created from 7T MRI data.</p><p><strong>Conclusion: </strong>This workflow resulted in a unique educational 3D representation of the human optic pathway that allows for direct manipulation, haptic feedback, and clear understanding of the anatomic relations both of this system normally and the correlations between lesion location and resultant expected visual field impairment. As opposed to the inconvenience, costs, and limited access accompanying the classical standard of advanced dissections of human specimens, this model is available to all learners in all environments.</p>","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":"11 1","pages":"47"},"PeriodicalIF":3.1,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12481937/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145202259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luther Raechal, Maria Bajwa, Jabeen Fayyaz, Giovanni Biglino, Suzan Kardong-Edgren
{"title":"A scoping review of literature about 3D printing: knowledge, skills and attitude for simulation educators in healthcare.","authors":"Luther Raechal, Maria Bajwa, Jabeen Fayyaz, Giovanni Biglino, Suzan Kardong-Edgren","doi":"10.1186/s41205-025-00292-9","DOIUrl":"10.1186/s41205-025-00292-9","url":null,"abstract":"<p><strong>Background: </strong>Three-Dimensional (3D) printing, also known as additive manufacturing (Linke, Additive manufacturing, explained, 2017), has rapidly emerged as a transformative tool in healthcare simulation. This scoping review investigates simulation educators' knowledge, skills, and attitudes (KSAs) about the impact of 3D printing and explores 3D printing's broader applications in healthcare simulation. By synthesizing existing literature, this study aims to identify trends, challenges, and opportunities for integrating 3D printing into simulation-based education.</p><p><strong>Main body: </strong>The review followed the PRISMA-ScR framework, employing a six-step approach. A comprehensive search was conducted across databases, including PubMed, Medline, ERIC, CINAHL, and Google Scholar, covering studies published between 2000 and 2023. Keywords related to 3D printing and simulation-based education were used. Inclusion criteria focused on peer-reviewed articles discussing 3D printing's role in KSAs for simulation educators and its applications in healthcare simulation. Articles were charted and analyzed thematically to identify trends, challenges, and outcomes. A total of 181 studies were included, spanning 36 countries and 113 journals. Most studies focused on medical education, with 73% utilizing 3D-printed models for direct teaching. Key themes identified included realism, skill development, cost-effectiveness, and teaching effectiveness. Challenges included model accuracy, training gaps for educators, and resource limitations. Study designs were predominantly descriptive, with a significant portion being single-site case reports.</p><p><strong>Conclusion: </strong>3D printing has the potential to revolutionize simulation-based education by enhancing realism, accessibility, and skill development. However, gaps in educator training and methodological rigor must be addressed. Future research should focus on multi-institutional studies and long-term outcomes to maximize the impact of the technology.</p>","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":"11 1","pages":"46"},"PeriodicalIF":3.1,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12376359/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144980687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lightweight encoding for medical additive manufacturing files.","authors":"Xin Zhao, Jinjie Huang, Mingcong Xu","doi":"10.1186/s41205-025-00283-w","DOIUrl":"10.1186/s41205-025-00283-w","url":null,"abstract":"<p><strong>Background: </strong>Additive manufacturing technology has revolutionized the medical field by enabling the production of customized implants with complex internal structures that enhance mechanical properties and biocompatibility. These intricate designs often result in exceedingly large 3D model files due to the high level of detail required. The substantial data volume poses significant file storage, transmission, and processing challenges. Traditional compression methods cannot encode complex models efficiently without compromising accuracy and compatibility. This study aims to develop a lightweight encoding strategy for 3D geometric files in medical additive manufacturing that significantly reduces file size while preserving data accuracy and compatibility with existing industry-standard formats.</p><p><strong>Methods: </strong>We proposed a geometric relationship-based clustering method for the topological reconstruction of mesh models. The method involves non-uniform and multi-scale mesh simplification to retain critical features and reduce redundant data. By encoding these repetitive features only once, the encoding strategy enhances compression efficiency. We implemented compatible encoding schemes for the AMF (Additive Manufacturing File) and 3MF (3D Manufacturing Format) data formats, referred to as Lite AMF and Lite 3MF. Experiments on three medical implant models were conducted to evaluate the effectiveness of the proposed method.</p><p><strong>Results: </strong>The proposed encoding strategy achieved significant file size reductions, with Lite AMF and Lite 3MF formats reducing file sizes by 81.99% and 91.34%, respectively, compared to the original formats. The compression algorithm effectively preserved the geometric characteristics of the models. The Hausdorff distance between the original and compressed models was less than 0.001 for all three models, indicating high fidelity and maintaining accuracy within the acceptable manufacturing tolerances of current medical additive manufacturing technologies.</p><p><strong>Conclusion: </strong>The lightweight encoding strategy effectively reduces the file size of complex medical 3D models by over 80% while preserving data accuracy and compatibility with existing formats. By efficiently encoding repetitive structures and optimizing mesh data, the method enhances storage and transmission efficiency, addressing the challenges of large data volumes in medical additive manufacturing. The compatibility with standard AMF and 3MF formats ensures that the encoded models can be directly utilized in existing 3D printing software without modification.</p>","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":"11 1","pages":"45"},"PeriodicalIF":3.1,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12323226/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144786026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dimensional accuracy of 3D-printed surgical cutting guides after hospital sterilization: a comparative evaluation of ten MEX materials.","authors":"Diana Popescu, Mariana Cristiana Iacob, Rodica Marinescu","doi":"10.1186/s41205-025-00291-w","DOIUrl":"10.1186/s41205-025-00291-w","url":null,"abstract":"<p><strong>Background: </strong>Integrating 3D printing into orthopedic oncology enables the development of patient-specific cutting guides for specific anatomy. To preserve surgical precision, especially in tumor resections where the safety margins must balance minimization of recurrence with avoidance of excessive bone removal, it is critical to maintain the dimensional accuracy of these guides throughout all stages of fabrication, disinfection, cleaning, and sterilization.</p><p><strong>Methods: </strong>Personalized cutting guides were 3D printed using ten filaments, and 3D scanned before and after sterilization. Two sterilization methods were used: autoclave and vaporized hydrogen peroxide. Dimensional deviations were assessed by comparing the reference STL model with the scanned models using metrics such as root mean square, standard deviation, Gaussian mean, and maximum error. Pearson correlation analysis was conducted to evaluate inter-sample variability and metric interdependence.</p><p><strong>Results: </strong>PLA and PETG showed the best dimensional accuracy in the as-printed state with RMS values of 0.093 mm and 0.093 mm, respectively, and standard deviations below 0.092 mm. After hydrogen peroxide sterilization, PETG, PC, and PETG-CF kept a high accuracy, while PLA, PLA-HP, PA, and PA6-CF showed significant deformations. Autoclave sterilization determined severe deformation in most materials, with PC showing unexpectedly changes of the geometrical form, increasing in RMS error from 0.127 mm to 3.642 mm. In the as-printed state, maximum error remained below 0.29 mm for all materials, with PLA having the highest localized deviation (0.283 mm). After hydrogen peroxide sterilization, PETG, PC, and ABS maintained maximum error values lower than 0.27 mm, while PLA increased to 0.274 mm and PLA-HP to 0.268 mm. These values, although moderate, showed geometric changes that affect fit in anatomically constrained regions. Pearson correlation analysis showed that hydrogen peroxide sterilization altered the relationship between accuracy metrics of prints after manufacturing, weakening the correlation between RMS and Gaussian mean. This suggested increased unpredictability in deformation direction and highlighted less consistent deformation patterns.</p><p><strong>Conclusions: </strong>Disinfection and sterilization processes were highly material-dependent, as expected. PETG, PC, and PETG-CF were the most stable materials for the 3D-printed surgical guides when using cold plasma sterilization. Materials like PLA, PLA-HP, and PA require caution due to their instability. Designers should take into account the deformation directionality loss post-sterilization and integrate fit allowances into surgical guide geometry.</p>","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":"11 1","pages":"44"},"PeriodicalIF":3.1,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12317548/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144762392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Viktor G Aleinikov, Talgat T Kerimbayev, Yergen N Kenzhegulov, Daniyar K Zhamoldin, Zhandos M Tuigynov, Ermek A Urunbayev, Nurzhan B Abishev, Meirzhan S Oshayev, Dinara M Baiskhanova, Makar P Solodovnikov, Serik K Akshulakov, Diana Kerimbayeva
{"title":"Biomechanical and clinical evaluation of 3D-printed personalized vertebral implants after total En-Bloc spondylectomy: two-year follow-up outcomes.","authors":"Viktor G Aleinikov, Talgat T Kerimbayev, Yergen N Kenzhegulov, Daniyar K Zhamoldin, Zhandos M Tuigynov, Ermek A Urunbayev, Nurzhan B Abishev, Meirzhan S Oshayev, Dinara M Baiskhanova, Makar P Solodovnikov, Serik K Akshulakov, Diana Kerimbayeva","doi":"10.1186/s41205-025-00294-7","DOIUrl":"10.1186/s41205-025-00294-7","url":null,"abstract":"<p><strong>Background: </strong>This prospective study evaluated the efficacy of 3D-printed personalized vertebral implants in restoring spinal stability following total en bloc spondylectomy (TES) for benign spinal tumors. Given the lack of specialized implants for post-resection reconstruction, this approach integrates customized 3D-printed implants to enhance the anatomical precision, biomechanical stability, and clinical outcomes.</p><p><strong>Methods: </strong>Four patients underwent TES using custom-designed 3D-printed vertebral implants. Key surgical parameters including operative time, intraoperative blood loss, pain reduction (VAS), and functional recovery (ODI) were assessed. Biomechanical testing was conducted to evaluate implant durability under high loads. Functional and neurological outcomes were monitored over a two-year follow-up period using clinical assessments and CT imaging.</p><p><strong>Results: </strong>Personalized 3D-printed implants demonstrated high mechanical stability with no structural deformation under load-bearing conditions. Postoperative VAS and ODI scores significantly improved, indicating substantial pain reduction and enhanced functional recovery. Neurological evaluations revealed that 75% of patients regained full motor and sensory functions. CT imaging confirmed stable implant positioning, with no signs of subsidence, fixation failure, or implant-related complications.</p><p><strong>Conclusions: </strong>This study highlights the clinical feasibility and potential advantages of 3D-printed personalized vertebral implants for spinal reconstruction, including optimized surgical planning, reduced operative time, and minimal blood loss. Despite promising short-term outcomes, further large-scale, multicenter trials are required to establish long-term clinical efficacy and broader applicability in diverse patient populations.</p>","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":"11 1","pages":"43"},"PeriodicalIF":3.1,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12315295/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144762391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qianyu Shi, Jiazhi Zhu, Haijie Liang, Ruifeng Wang, Siyi Huang, Wei Guo, Tao Ji, Xiaodong Tang
{"title":"How precise is excision and reconstruction using 3D printing technology for total sacrectomy: accuracy validation in 9 consecutive cases.","authors":"Qianyu Shi, Jiazhi Zhu, Haijie Liang, Ruifeng Wang, Siyi Huang, Wei Guo, Tao Ji, Xiaodong Tang","doi":"10.1186/s41205-025-00295-6","DOIUrl":"10.1186/s41205-025-00295-6","url":null,"abstract":"<p><strong>Background: </strong>With 3D printing technology, we can now use preoperative imaging for precise surgical plan. We can also use patient-specific surgical jig to improve the accuracy of osteotomy and 3D-printed custom-made endoprostheses combined with a screw-rod system to restore lumbosacral stability. The aim of this study was to evaluate the accuracy of 3D printing technology for precise osteotomy during total sacrectomy.</p><p><strong>Methods: </strong>Nine patients with primary malignant tumors of the sacrum who underwent total sacrectomy at our center were enrolled. Osteotomy was planned based on preoperative imaging (CT, MRI). Generally, an additional 8-10 mm margin beyond the tumor was determined by the fusion of MR and CT images. Patient-specific surgical jigs and 3D-printed sacral endoprostheses were then designed based on the planned osteotomy planes. Pre- and postoperative 3D models of the lumbosacral and pelvic regions were constructed using the fiducial registration model of 3D slicer software 5.1.0. Postoperative CT scans were compared with the planned osteomy planes based on preoperative CT scans, in order to evaluate the accuracy of the osteotomy and endoprosthetic reconstruction. For each patient, four levels of osteotomy planes were chosen, including the upper edge of the sacroiliac (SI) joint, the S1 and S2 foramen levels, and the caudal edge of the SI joint, for analyzing position and angular deviations between the preoperative plan and actual osteotomy along with the endoprosthesis position.</p><p><strong>Results: </strong>Pathological diagnoses included four cases of osteosarcoma, four cases of chordoma, and one case of Ewing sarcoma. All osteotomies in nine patients achieved R0 resection, as verified pathologically. An average angular deviation of 4.27° (interquartile range[IQR] 4.15) and an osteotomy position deviation of 4.00 mm (IQR 2.90) were observed. The mean angular deviations of the four levels were 3.50° (IQR 6.02), 3.86° (IQR 2.55), 4.81° (IQR 4.37), and 4.92° (IQR 3.27). The mean position deviations at the four levels were 3.15 mm (IQR 3.54), 3.55 mm (IQR 1.37), 4.26 mm (IQR 2.61), and 4.86 mm (IQR 3.93). No significant difference was found among the angular and position deviations at different levels. However, the proportions of individuals with position deviations > 2 mm and > 5 mm were significantly greater at the caudal end of the SI joint than at the upper end. All position deviations were within 8 mm. The average follow-up duration was 24.4 months. At the last follow-up, three patients experienced local recurrence, and one patient died of disease. All endoprostheses were in place without significant displacement. The mean Musculoskeletal Tumor Society scoring system (MSTS93) and MUD scores (function and sensation of lower limbs (M), urination and uriesthesia (U), and defecation and rectal sensation (D)) were 19.4 (16 to 24) and 16.3 (12 to 24), respectively.</p><p><strong>Conclusion: </strong>No","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":"11 1","pages":"42"},"PeriodicalIF":3.1,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12308921/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144746312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Custom 3D-printed porous titanium augments for Paprosky type III acetabular defects: a case series combining biomechanical rationale with early clinical outcomes.","authors":"Tengbin Shi, Wenming Zhang, Xinyu Fang","doi":"10.1186/s41205-025-00293-8","DOIUrl":"10.1186/s41205-025-00293-8","url":null,"abstract":"<p><strong>Background: </strong>Severe acetabular bone defects (Paprosky type III) pose significant challenges for reconstruction and stable implant fixation. This study aimed to analyze the biomechanical properties and clinical safety of personalized 3D-printed porous titanium alloy reinforcement augments and evaluate their therapeutic efficacy in reconstructing these complex defects.</p><p><strong>Methods: </strong>We reviewed three cases of Paprosky type III acetabular defects reconstructed using personalized 3D-printed porous titanium alloy augments. Finite element analysis (FEA) simulated the defects, utilizing a commercial augment as a control. Stress distribution within the augments, fixation screws, acetabular cups, and surrounding bone was analyzed under simulated single-leg standing (1 × body weight), walking (4 × BW), and jogging (6 × BW) loading conditions, with comparisons made to the control.</p><p><strong>Results: </strong>Under all loading conditions, the peak stresses observed on the augment screws and acetabular cups in all three cases were lower than the buckling strength of titanium alloy and were consistently lower than those recorded in the control group. This indicates that the personalized augments provided stable support for acetabular cup fixation, aiding in the restoration of the hip rotation center and lower limb length.</p><p><strong>Conclusions: </strong>Personalized 3D-printed porous titanium alloy augments demonstrate favorable biomechanical safety and clinical efficacy based on FEA and initial case review. For severe acetabular bone defects, these custom augments offer good initial stability, promoting bone integration for long-term fixation, and potentially reducing risks associated with cup loosening, dislocation, and periprosthetic fracture.</p>","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":"11 1","pages":"41"},"PeriodicalIF":3.1,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12297843/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144735765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M Suffo, M Quiroga-De Castro, L Galán-Romero, P Andrés-Cano
{"title":"Intra-hospital patient-specific 3D printed surgical guide for patients with thoracic scoliotic deformities, the collaboration between engineer and surgeon.","authors":"M Suffo, M Quiroga-De Castro, L Galán-Romero, P Andrés-Cano","doi":"10.1186/s41205-025-00279-6","DOIUrl":"10.1186/s41205-025-00279-6","url":null,"abstract":"<p><strong>Background: </strong>This study validates the intra-hospital design and 3D printing process of personalized surgical guides to enhance the accuracy of pedicle screw insertion in patients with thoracic scoliotic deformities. It introduces a novel collaborative paradigm between surgeons and engineers, aiming to improve efficiency and reduce errors in the manufacturing of patient-specific instruments (PSIs).</p><p><strong>Methods: </strong>The process began with the generation of 3D biomodels of vertebrae from computed tomography scans. Surgical guides were then created using two 3D printing techniques: Fused Filament Fabrication (FFF) with polylactic acid (PLA) and Stereolithography (SLA) with photopolymer resin. Three different prototypes were compared based on multifactorial indicators, including economic cost, macroscopic surface finish, and mechanical stability. The mechanical performance of the guides was evaluated under loads generated during pedicle screw penetration and threading.</p><p><strong>Results and discussions: </strong>PLA models printed using FFF were found to be cheaper and simpler to manufacture than SLA resin models. Despite differences observed under a microscope, PLA models exhibited a macroscopic surface finish comparable to that of SLA resin models. Both materials demonstrated similar mechanical properties, although their values were lower than those reported in the manufacturer's datasheet. Importantly, both types of guides successfully withstood the mechanical loads generated during surgical procedures. The intra-hospital collaboration between engineers and surgeons was identified as a key factor in improving outcomes and reducing error risks, showcasing the benefits of interdisciplinary teamwork.</p><p><strong>Conclusions: </strong>3D-printed PSIs made from PLA using FFF are more cost-effective and quicker to produce compared to SLA resin models, while achieving similar results in surface finish and mechanical stability. The implementation of a collaborative approach between engineers and surgeons within hospital settings enhances the efficiency and accuracy of patient-specific surgical guide manufacturing, offering a promising solution for improving surgical outcomes in thoracic scoliotic deformities.</p>","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":"11 1","pages":"40"},"PeriodicalIF":3.2,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12281761/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144683713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kevin Y Wang, Alexander R Farid, Simon Comtesse, Arvind G von Keudell
{"title":"Segmentation and finite element analysis in orthopaedic trauma.","authors":"Kevin Y Wang, Alexander R Farid, Simon Comtesse, Arvind G von Keudell","doi":"10.1186/s41205-025-00284-9","DOIUrl":"10.1186/s41205-025-00284-9","url":null,"abstract":"<p><strong>Background: </strong>Finite Element Analysis (FEA) has evolved into a crucial tool in orthopaedic trauma research and clinical practice. This review explores the broad applications of FEA in orthopedic surgery.</p><p><strong>Main body: </strong>FEA involves several steps, including geometry representation, segmentation, 3D rendering, meshing, material property assignment, defining boundary conditions, and specifying contact conditions. The process utilizes patient-specific volumetric data-computed tomography (CT) scan, for example-and aims for a balance between computational efficiency and accuracy. FEA provides valuable outcome measures such as stress distribution, strain quantification, fracture gap motion, failure prediction, and implant stability. These measures aid in evaluating fracture fixation techniques, implant design, and the impact of different fixation strategies. FEA has found applications in femur and proximal humerus fracture fixation, distal femur fracture planning, tibial plateau fractures, and post-traumatic osteoarthritis. It plays a pivotal role in predicting fracture risk, assessing construct stability, and informing surgical decision-making. Additionally, FEA facilitates the development of custom surgical planning and personalized implants. To enhance accuracy, FEA is combined with cadaveric biomechanical analysis, providing a reference-standard representation of in vivo kinematics. Future research should focus on refining FEA models through increased validation using cadaveric models and clinical data.</p><p><strong>Conclusion: </strong>FEA has revolutionized orthopaedic trauma research by offering insights into biomechanics, fracture fixation, and implant design. Integration with cadaveric biomechanical analysis enhances accuracy. Further validation efforts and integration into regular clinical practice are essential for realizing FEA's full potential in individualized patient care. The combination of FEA and cadaveric analysis contributes to a comprehensive understanding of in vivo kinematics, ultimately improving patient outcomes.</p>","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":"11 1","pages":"39"},"PeriodicalIF":3.2,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12278576/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144676689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shijiao Lu, Yiming Gong, Shengqian Pan, Jun Liu, Jianfeng Wang, Peng Wang
{"title":"The novel technique for surgical simulation training of patient-specific silicone models of pediatric congenital choledochal cysts.","authors":"Shijiao Lu, Yiming Gong, Shengqian Pan, Jun Liu, Jianfeng Wang, Peng Wang","doi":"10.1186/s41205-025-00252-3","DOIUrl":"10.1186/s41205-025-00252-3","url":null,"abstract":"<p><strong>Purpose: </strong>This study was aimed to design a patient-specific models of pediatric congenital choledochal cysts(CCC) for surgical simulation training.</p><p><strong>Methods: </strong>Seventeen children suffering from CCC were included in this study. Liver and hepatic hilum structures were generated as standard parts by traditional silicone casting after 3D printing via digital imaging. Moreover, the choledochal cyst was produced as an individualized part by the silicone shaking technique and soft resin printing. Afterwards, the two model parts were assembled for laparoscopic surgical simulation. Surgical excision and suturing, and usability were evaluated. P < 0.05 was considered to indicate a significant difference.</p><p><strong>Results: </strong>Compared with those of the digital models, the liver well and hepatic hilum structures produced were more aesthetically pleasing. Moreover, cyst models were produced accordingly. In addition, silicone models have good mechanical properties and lower costs than resins and TPU powder, and silicone models are recommended as useful tools for presurgical simulated planning. The results also showed good feedback of cutting and suturing with good face validity and usability after the simulation was complete.</p><p><strong>Conclusions: </strong>It is feasible that the application of the silicone shaking technique can produce a hollow individualized model of CCC for surgical simulation and medical training.</p>","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":"11 1","pages":"37"},"PeriodicalIF":3.2,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12265354/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144644258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}