Advanced Nonlinear Studies最新文献

筛选
英文 中文
Decay estimates for defocusing energy-critical Hartree equation 散焦能量临界哈特里方程的衰减估计值
IF 1.8 2区 数学
Advanced Nonlinear Studies Pub Date : 2024-05-02 DOI: 10.1515/ans-2023-0138
Miao Chen, Hua Wang, Xiaohua Yao
{"title":"Decay estimates for defocusing energy-critical Hartree equation","authors":"Miao Chen, Hua Wang, Xiaohua Yao","doi":"10.1515/ans-2023-0138","DOIUrl":"https://doi.org/10.1515/ans-2023-0138","url":null,"abstract":"In this paper, we are devoted to establishing the point-wise decay estimates for solution to the 5D defocusing energy-critical Hartree equation with an initial data in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi>H</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mn>5</m:mn> </m:mrow> </m:msup> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>∩</m:mo> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mn>5</m:mn> </m:mrow> </m:msup> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:tex-math>${H}^{2}left({mathbb{R}}^{5}right)cap {L}^{1}left({mathbb{R}}^{5}right)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0138_ineq_001.png\"/> </jats:alternatives> </jats:inline-formula>. We show that the nonlinear solution has the same time decay rate as the linear one. The main new ingredient is that we used the theories of Lorentz spaces to overcome the low power of nonlinearity.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"21 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140840659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Existence of ground states to quasi-linear Schrödinger equations with critical exponential growth involving different potentials 具有临界指数增长的准线性薛定谔方程的基态存在,涉及不同的电势
IF 1.8 2区 数学
Advanced Nonlinear Studies Pub Date : 2024-04-30 DOI: 10.1515/ans-2023-0136
Caifeng Zhang, Maochun Zhu
{"title":"Existence of ground states to quasi-linear Schrödinger equations with critical exponential growth involving different potentials","authors":"Caifeng Zhang, Maochun Zhu","doi":"10.1515/ans-2023-0136","DOIUrl":"https://doi.org/10.1515/ans-2023-0136","url":null,"abstract":"The purpose of this paper is three-fold. First, we establish singular Trudinger–Moser inequalities with less restrictive constraint:&lt;jats:disp-formula&gt; &lt;jats:label&gt;(0.1)&lt;/jats:label&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\" overflow=\"scroll\"&gt; &lt;m:munder&gt; &lt;m:mrow&gt; &lt;m:mi&gt;sup&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;m:mo&gt;∈&lt;/m:mo&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi&gt;H&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mn&gt;1&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"double-struck\"&gt;R&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mn&gt;2&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:munder&gt; &lt;m:mrow&gt; &lt;m:mo&gt;∫&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"double-struck\"&gt;R&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mn&gt;2&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;/m:mrow&gt; &lt;/m:munder&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;|&lt;/m:mo&gt; &lt;m:mi&gt;∇&lt;/m:mi&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;|&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mn&gt;2&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:mo&gt;+&lt;/m:mo&gt; &lt;m:mi&gt;V&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mn&gt;2&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mi mathvariant=\"normal\"&gt;d&lt;/m:mi&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;m:mo&gt;≤&lt;/m:mo&gt; &lt;m:mn&gt;1&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:munder&gt; &lt;m:munder&gt; &lt;m:mrow&gt; &lt;m:mo&gt;∫&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"double-struck\"&gt;R&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mn&gt;2&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;/m:mrow&gt; &lt;/m:munder&gt; &lt;m:mfrac&gt; &lt;m:mrow&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi&gt;e&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mn&gt;4&lt;/m:mn&gt; &lt;m:mi&gt;π&lt;/m:mi&gt; &lt;m:mfenced close=\")\" open=\"(\"&gt; &lt;m:mrow&gt; &lt;m:mn&gt;1&lt;/m:mn&gt; &lt;m:mo&gt;−&lt;/m:mo&gt; &lt;m:mfrac&gt; &lt;m:mrow&gt; &lt;m:mi&gt;β&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mn&gt;2&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:mfrac&gt; &lt;/m:mrow&gt; &lt;/m:mfenced&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mn&gt;2&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:mo&gt;−&lt;/m:mo&gt; &lt;m:mn&gt;1&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;|&lt;/m:mo&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;|&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;β&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;/m:mrow&gt; &lt;/m:mfrac&gt; &lt;m:mi mathvariant=\"normal\"&gt;d&lt;/m:mi&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;m:mo&gt;&lt;&lt;/m:mo&gt; &lt;m:mo&gt;+&lt;/m:mo&gt; &lt;m:mi&gt;∞&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;/m:math&gt; &lt;jats:tex-math&gt; $$underset{uin {H}^{1}({mathbb{R}}^{2}),underset{{mathbb{R}}^{2}}{int }(vert nabla u{vert }^{2}+V(x){u}^{2})mathrm{d}xle 1}{mathrm{sup}}underset{{mathbb{R}}^{2}}{int }frac{{e}^{4pi left(1-tfrac{beta }{2}right){u}^{2}}-1}{vert x{vert }^{beta }}mathrm{d}x&lt; +infty ,$$ &lt;/jats:tex-math&gt; &lt;jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0136_eq_001.png\"/&gt; &lt;/jats:alternatives&gt; &lt;/jats:disp-formula&gt;where &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"&gt; &lt;m:mn&gt;0&lt;/m:m","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"16 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140840657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A degenerate migration-consumption model in domains of arbitrary dimension 任意维度域中的退化迁移-消费模型
IF 1.8 2区 数学
Advanced Nonlinear Studies Pub Date : 2024-04-29 DOI: 10.1515/ans-2023-0131
Michael Winkler
{"title":"A degenerate migration-consumption model in domains of arbitrary dimension","authors":"Michael Winkler","doi":"10.1515/ans-2023-0131","DOIUrl":"https://doi.org/10.1515/ans-2023-0131","url":null,"abstract":"In a smoothly bounded convex domain &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"&gt; &lt;m:mi mathvariant=\"normal\"&gt;Ω&lt;/m:mi&gt; &lt;m:mo&gt;⊂&lt;/m:mo&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"double-struck\"&gt;R&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;n&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;/m:math&gt; &lt;jats:tex-math&gt;${Omega}subset {mathbb{R}}^{n}$&lt;/jats:tex-math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0131_ineq_001.png\"/&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; with &lt;jats:italic&gt;n&lt;/jats:italic&gt; ≥ 1, a no-flux initial-boundary value problem for&lt;jats:disp-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\" overflow=\"scroll\"&gt; &lt;m:mfenced close=\"\" open=\"{\"&gt; &lt;m:mrow&gt; &lt;m:mtable&gt; &lt;m:mtr&gt; &lt;m:mtd columnalign=\"left\"&gt; &lt;m:msub&gt; &lt;m:mrow&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;t&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msub&gt; &lt;m:mo&gt;=&lt;/m:mo&gt; &lt;m:mi mathvariant=\"normal\"&gt;Δ&lt;/m:mi&gt; &lt;m:mfenced close=\")\" open=\"(\"&gt; &lt;m:mrow&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;m:mi&gt;ϕ&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;v&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:mfenced&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mspace width=\"1em\"/&gt; &lt;/m:mtd&gt; &lt;/m:mtr&gt; &lt;m:mtr&gt; &lt;m:mtd columnalign=\"left\"&gt; &lt;m:msub&gt; &lt;m:mrow&gt; &lt;m:mi&gt;v&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;t&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msub&gt; &lt;m:mo&gt;=&lt;/m:mo&gt; &lt;m:mi mathvariant=\"normal\"&gt;Δ&lt;/m:mi&gt; &lt;m:mi&gt;v&lt;/m:mi&gt; &lt;m:mo&gt;−&lt;/m:mo&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;m:mi&gt;v&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mspace width=\"1em\"/&gt; &lt;/m:mtd&gt; &lt;/m:mtr&gt; &lt;/m:mtable&gt; &lt;/m:mrow&gt; &lt;/m:mfenced&gt; &lt;/m:math&gt; &lt;jats:tex-math&gt;$$begin{cases}_{t}={Delta}left(uphi left(vright)right),quad hfill {v}_{t}={Delta}v-uv,quad hfill end{cases}$$&lt;/jats:tex-math&gt; &lt;jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0131_eq_999.png\"/&gt; &lt;/jats:alternatives&gt; &lt;/jats:disp-formula&gt;is considered under the assumption that near the origin, the function &lt;jats:italic&gt;ϕ&lt;/jats:italic&gt; suitably generalizes the prototype given by&lt;jats:disp-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\" overflow=\"scroll\"&gt; &lt;m:mi&gt;ϕ&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;ξ&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;=&lt;/m:mo&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi&gt;ξ&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;α&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mspace width=\"2em\"/&gt; &lt;m:mi&gt;ξ&lt;/m:mi&gt; &lt;m:mo&gt;∈&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;[&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mn&gt;0&lt;/m:mn&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:msub&gt; &lt;m:mrow&gt; &lt;m:mi&gt;ξ&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mn&gt;0&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:msub&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;]&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;.&lt;/m:mo&gt; &lt;/m:math&gt; &lt;jats:tex-math&gt;$$phi left(xi right)={xi }^{alpha },qquad xi in left[0,{xi }_{0}right].$$&lt;/jats:tex-math&gt; &lt;jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0131_eq_998.png\"/&gt; &lt;/jats:alternatives&gt; &lt;/jats:disp-formula&gt;By means of separate approaches, it is shown that in bo","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"64 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140840862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New multiplicity results in prescribing Q-curvature on standard spheres 在标准球上规定 Q 曲率的新多重性结果
IF 1.8 2区 数学
Advanced Nonlinear Studies Pub Date : 2024-04-20 DOI: 10.1515/ans-2023-0135
Mohamed Ben Ayed, Khalil El Mehdi
{"title":"New multiplicity results in prescribing Q-curvature on standard spheres","authors":"Mohamed Ben Ayed, Khalil El Mehdi","doi":"10.1515/ans-2023-0135","DOIUrl":"https://doi.org/10.1515/ans-2023-0135","url":null,"abstract":"In this paper, we study the problem of prescribing <jats:italic>Q</jats:italic>-Curvature on higher dimensional standard spheres. The problem consists in finding the right assumptions on a function <jats:italic>K</jats:italic> so that it is the <jats:italic>Q</jats:italic>-Curvature of a metric conformal to the standard one on the sphere. Using some pinching condition, we track the change in topology that occurs when crossing a critical level (or a virtually critical level if it is a critical point at infinity) and then compute a certain Euler-Poincaré index which allows us to prove the existence of many solutions. The locations of the levels sets of these solutions are determined in a very precise manner. These type of multiplicity results are new and are proved without any assumption of symmetry or periodicity on the function <jats:italic>K</jats:italic>.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"51 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140623905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Increase of power leads to a bilateral solution to a strongly nonlinear elliptic coupled system 增加功率导致强非线性椭圆耦合系统的双边解
IF 1.8 2区 数学
Advanced Nonlinear Studies Pub Date : 2024-04-20 DOI: 10.1515/ans-2023-0133
Francisco Ortegón Gallego, Mohamed Rhoudaf, Hajar Talbi
{"title":"Increase of power leads to a bilateral solution to a strongly nonlinear elliptic coupled system","authors":"Francisco Ortegón Gallego, Mohamed Rhoudaf, Hajar Talbi","doi":"10.1515/ans-2023-0133","DOIUrl":"https://doi.org/10.1515/ans-2023-0133","url":null,"abstract":"In this paper, we analyze the following nonlinear elliptic problem <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mfenced close=\"\" open=\"{\"> <m:mrow> <m:mtable> <m:mtr> <m:mtd columnalign=\"left\"> <m:mi>A</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mi>ρ</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>∇</m:mi> <m:mi>φ</m:mi> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mtext> in </m:mtext> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>,</m:mo> <m:mspace width=\"1em\" /> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:mtext>div</m:mtext> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>ρ</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mi>∇</m:mi> <m:mi>φ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> <m:mtext> in </m:mtext> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>,</m:mo> <m:mspace width=\"1em\" /> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mn>0</m:mn> <m:mtext> on </m:mtext> <m:mi>∂</m:mi> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>,</m:mo> <m:mspace width=\"1em\" /> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:mi>φ</m:mi> <m:mo>=</m:mo> <m:msub> <m:mrow> <m:mi>φ</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mtext> on </m:mtext> <m:mi>∂</m:mi> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>.</m:mo> <m:mspace width=\"1em\" /> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:mfenced> </m:math> <jats:tex-math>$begin{cases}Aleft(uright)=rho left(uright)vert nabla varphi {vert }^{2},text{in},{Omega},quad hfill text{div}left(rho left(uright)nabla varphi right)=0,text{in},{Omega},quad hfill u=0,text{on},partial {Omega},quad hfill varphi ={varphi }_{0},text{on},partial {Omega}.quad hfill end{cases}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0133_ineq_001.png\" /> </jats:alternatives> </jats:inline-formula> where <jats:italic>A</jats:italic>(<jats:italic>u</jats:italic>) = −div <jats:italic>a</jats:italic>(<jats:italic>x</jats:italic>, <jats:italic>u</jats:italic>, ∇<jats:italic>u</jats:italic>) is a Leray-Lions operator of order <jats:italic>p</jats:italic>. The second member of the first equation is only in <jats:italic>L</jats:italic> <jats:sup>1</jats:sup>(Ω). We prove the existence of a bilateral solution by an approximation procedure, the keypoint being a penalization technique.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"9 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140624049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Curvature conditions, Liouville-type theorems and Harnack inequalities for a nonlinear parabolic equation on smooth metric measure spaces 光滑度量空间上非线性抛物方程的曲率条件、Liouville 型定理和 Harnack 不等式
IF 1.8 2区 数学
Advanced Nonlinear Studies Pub Date : 2024-04-12 DOI: 10.1515/ans-2023-0120
Ali Taheri, Vahideh Vahidifar
{"title":"Curvature conditions, Liouville-type theorems and Harnack inequalities for a nonlinear parabolic equation on smooth metric measure spaces","authors":"Ali Taheri, Vahideh Vahidifar","doi":"10.1515/ans-2023-0120","DOIUrl":"https://doi.org/10.1515/ans-2023-0120","url":null,"abstract":"In this paper we prove gradient estimates of both elliptic and parabolic types, specifically, of Souplet-Zhang, Hamilton and Li-Yau types for positive smooth solutions to a class of nonlinear parabolic equations involving the Witten or drifting Laplacian on smooth metric measure spaces. These estimates are established under various curvature conditions and lower bounds on the generalised Bakry-Émery Ricci tensor and find utility in proving elliptic and parabolic Harnack-type inequalities as well as general Liouville-type and other global constancy results. Several applications and consequences are presented and discussed.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"2 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140579549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple concentrating solutions for a fractional (p, q)-Choquard equation 分数(p,q)-邱卡方程的多重集中解
IF 1.8 2区 数学
Advanced Nonlinear Studies Pub Date : 2024-04-04 DOI: 10.1515/ans-2023-0125
Vincenzo Ambrosio
{"title":"Multiple concentrating solutions for a fractional (p, q)-Choquard equation","authors":"Vincenzo Ambrosio","doi":"10.1515/ans-2023-0125","DOIUrl":"https://doi.org/10.1515/ans-2023-0125","url":null,"abstract":"We focus on the following fractional (&lt;jats:italic&gt;p&lt;/jats:italic&gt;, &lt;jats:italic&gt;q&lt;/jats:italic&gt;)-Choquard problem: &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mfenced open=\"{\" close=\"\"&gt; &lt;m:mrow&gt; &lt;m:mtable&gt; &lt;m:mtr&gt; &lt;m:mtd columnalign=\"left\"&gt; &lt;m:msubsup&gt; &lt;m:mrow&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo&gt;−&lt;/m:mo&gt; &lt;m:mi mathvariant=\"normal\"&gt;Δ&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;p&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;s&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msubsup&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;m:mo&gt;+&lt;/m:mo&gt; &lt;m:msubsup&gt; &lt;m:mrow&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo&gt;−&lt;/m:mo&gt; &lt;m:mi mathvariant=\"normal\"&gt;Δ&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;q&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;s&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msubsup&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;m:mo&gt;+&lt;/m:mo&gt; &lt;m:mi&gt;V&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;ε&lt;/m:mi&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;|&lt;/m:mo&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;|&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;p&lt;/m:mi&gt; &lt;m:mo&gt;−&lt;/m:mo&gt; &lt;m:mn&gt;2&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;m:mo&gt;+&lt;/m:mo&gt; &lt;m:mo stretchy=\"false\"&gt;|&lt;/m:mo&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;|&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;q&lt;/m:mi&gt; &lt;m:mo&gt;−&lt;/m:mo&gt; &lt;m:mn&gt;2&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;=&lt;/m:mo&gt; &lt;m:mfenced open=\"(\" close=\")\"&gt; &lt;m:mrow&gt; &lt;m:mfrac&gt; &lt;m:mrow&gt; &lt;m:mn&gt;1&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;|&lt;/m:mo&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;|&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;μ&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;/m:mrow&gt; &lt;/m:mfrac&gt; &lt;m:mo&gt;*&lt;/m:mo&gt; &lt;m:mi&gt;F&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:mfenced&gt; &lt;m:mi&gt;f&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mspace width=\"0.17em\" /&gt; &lt;m:mtext&gt; in &lt;/m:mtext&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"double-struck\"&gt;R&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;N&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mspace width=\"1em\" /&gt; &lt;/m:mtd&gt; &lt;/m:mtr&gt; &lt;m:mtr&gt; &lt;m:mtd columnalign=\"left\"&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;m:mo&gt;∈&lt;/m:mo&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi&gt;W&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;s&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mi&gt;p&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"double-struck\"&gt;R&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;N&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;∩&lt;/m:mo&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi&gt;W&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;s&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mi&gt;q&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"double-struck\"&gt;R&lt;/m:mi&gt; &lt;/m:mrow","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"89 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140579814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the large solutions to a class of k-Hessian problems 关于一类 k-Hessian 问题的大解
IF 1.8 2区 数学
Advanced Nonlinear Studies Pub Date : 2024-04-02 DOI: 10.1515/ans-2023-0128
Haitao Wan
{"title":"On the large solutions to a class of k-Hessian problems","authors":"Haitao Wan","doi":"10.1515/ans-2023-0128","DOIUrl":"https://doi.org/10.1515/ans-2023-0128","url":null,"abstract":"In this paper, we consider the &lt;jats:italic&gt;k&lt;/jats:italic&gt;-Hessian problem &lt;jats:italic&gt;S&lt;/jats:italic&gt; &lt;jats:sub&gt; &lt;jats:italic&gt;k&lt;/jats:italic&gt; &lt;/jats:sub&gt;(&lt;jats:italic&gt;D&lt;/jats:italic&gt; &lt;jats:sup&gt;2&lt;/jats:sup&gt; &lt;jats:italic&gt;u&lt;/jats:italic&gt;) = &lt;jats:italic&gt;b&lt;/jats:italic&gt;(&lt;jats:italic&gt;x&lt;/jats:italic&gt;)&lt;jats:italic&gt;f&lt;/jats:italic&gt;(&lt;jats:italic&gt;u&lt;/jats:italic&gt;) in Ω, &lt;jats:italic&gt;u&lt;/jats:italic&gt; = +∞ on &lt;jats:italic&gt;∂&lt;/jats:italic&gt;Ω, where Ω is a &lt;jats:italic&gt;C&lt;/jats:italic&gt; &lt;jats:sup&gt;∞&lt;/jats:sup&gt;-smooth bounded strictly (&lt;jats:italic&gt;k&lt;/jats:italic&gt; − 1)-convex domain in &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"double-struck\"&gt;R&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;N&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;/m:math&gt; &lt;jats:tex-math&gt;${mathbb{R}}^{N}$&lt;/jats:tex-math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0128_ineq_001.png\" /&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; with &lt;jats:italic&gt;N&lt;/jats:italic&gt; ≥ 2, &lt;jats:italic&gt;b&lt;/jats:italic&gt; ∈ C&lt;jats:sup&gt;∞&lt;/jats:sup&gt;(Ω) is positive in Ω and may be singular or vanish on &lt;jats:italic&gt;∂&lt;/jats:italic&gt;Ω, &lt;jats:italic&gt;f&lt;/jats:italic&gt; ∈ &lt;jats:italic&gt;C&lt;/jats:italic&gt;[0, ∞) ∩ &lt;jats:italic&gt;C&lt;/jats:italic&gt; &lt;jats:sup&gt;1&lt;/jats:sup&gt;(0, ∞) (or &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"&gt; &lt;m:mi&gt;f&lt;/m:mi&gt; &lt;m:mo&gt;∈&lt;/m:mo&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi&gt;C&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mn&gt;1&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"double-struck\"&gt;R&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:tex-math&gt;$fin {C}^{1}left(mathbb{R}right)$&lt;/jats:tex-math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0128_ineq_002.png\" /&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;) is a positive and increasing function. We establish the first expansions (equalities) of &lt;jats:italic&gt;k&lt;/jats:italic&gt;-convex solutions to the above problem when &lt;jats:italic&gt;f&lt;/jats:italic&gt; is borderline regularly varying and Γ-varying at infinity respectively. For the former, we reveal the exact influences of some indexes of &lt;jats:italic&gt;f&lt;/jats:italic&gt; and principal curvatures of &lt;jats:italic&gt;∂&lt;/jats:italic&gt;Ω on the first expansion of solutions. For the latter, we find the principal curvatures of &lt;jats:italic&gt;∂&lt;/jats:italic&gt;Ω have no influences on the expansions. Our results and methods are quite different from the existing ones (including &lt;jats:italic&gt;k&lt;/jats:italic&gt; = &lt;jats:italic&gt;N&lt;/jats:italic&gt;). Moreover, we know the existence of &lt;jats:italic&gt;k&lt;/jats:italic&gt;-convex solutions to the above problem (including &lt;jats:italic&gt;k&lt;/jats:italic&gt; = &lt;jats:italic&gt;N&lt;/jats:italic&gt;) is still an open problem when &lt;jats:italic&gt;b&lt;/jats:italic&gt; possesses high singularity on &lt;jats:italic&gt;∂&lt;/jats:italic&gt;Ω and &lt;jats:italic&gt;f&lt;/jats:italic&gt; satisfies Keller–Os","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"49 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140579435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Michael-Simon type inequalities in hyperbolic space H n + 1 ${mathbb{H}}^{n+1}$ via Brendle-Guan-Li’s flows 双曲空间 H n + 1 ${mathbb{H}}^{n+1}$ 中通过布伦德尔-关-李流的迈克尔-西蒙式不等式
IF 1.8 2区 数学
Advanced Nonlinear Studies Pub Date : 2024-04-01 DOI: 10.1515/ans-2023-0127
Jingshi Cui, Peibiao Zhao
{"title":"Michael-Simon type inequalities in hyperbolic space H n + 1 ${mathbb{H}}^{n+1}$ via Brendle-Guan-Li’s flows","authors":"Jingshi Cui, Peibiao Zhao","doi":"10.1515/ans-2023-0127","DOIUrl":"https://doi.org/10.1515/ans-2023-0127","url":null,"abstract":"In the present paper, we first establish and verify a new sharp hyperbolic version of the Michael-Simon inequality for mean curvatures in hyperbolic space &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"double-struck\"&gt;H&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;n&lt;/m:mi&gt; &lt;m:mo&gt;+&lt;/m:mo&gt; &lt;m:mn&gt;1&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;/m:math&gt; &lt;jats:tex-math&gt;${mathbb{H}}^{n+1}$&lt;/jats:tex-math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0127_ineq_002.png\" /&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; based on the locally constrained inverse curvature flow introduced by Brendle, Guan and Li (“An inverse curvature type hypersurface flow in &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"double-struck\"&gt;H&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;n&lt;/m:mi&gt; &lt;m:mo&gt;+&lt;/m:mo&gt; &lt;m:mn&gt;1&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;/m:math&gt; &lt;jats:tex-math&gt;${mathbb{H}}^{n+1}$&lt;/jats:tex-math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0127_ineq_003.png\" /&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;,” (Preprint)) as follows&lt;jats:disp-formula&gt; &lt;jats:label&gt;(0.1)&lt;/jats:label&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\" overflow=\"scroll\"&gt; &lt;m:munder&gt; &lt;m:mrow&gt; &lt;m:mo&gt;∫&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;M&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:munder&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi&gt;λ&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mo&gt;′&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:msqrt&gt; &lt;m:mrow&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi&gt;f&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mn&gt;2&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:msubsup&gt; &lt;m:mrow&gt; &lt;m:mi&gt;E&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mn&gt;1&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mn&gt;2&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:msubsup&gt; &lt;m:mo&gt;+&lt;/m:mo&gt; &lt;m:mo stretchy=\"false\"&gt;|&lt;/m:mo&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi&gt;∇&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;M&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:mi&gt;f&lt;/m:mi&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;|&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mn&gt;2&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;/m:mrow&gt; &lt;/m:msqrt&gt; &lt;m:mo&gt;−&lt;/m:mo&gt; &lt;m:munder&gt; &lt;m:mrow&gt; &lt;m:mo&gt;∫&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;M&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:munder&gt; &lt;m:mfenced close=\"⟩\" open=\"⟨\"&gt; &lt;m:mrow&gt; &lt;m:mrow&gt; &lt;m:mover accent=\"true\"&gt; &lt;m:mrow&gt; &lt;m:mi&gt;∇&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;̄&lt;/m:mo&gt; &lt;/m:mover&gt; &lt;/m:mrow&gt; &lt;m:mfenced close=\")\" open=\"(\"&gt; &lt;m:mrow&gt; &lt;m:mi&gt;f&lt;/m:mi&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi&gt;λ&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mo&gt;′&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;/m:mrow&gt; &lt;/m:mfenced&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mi&gt;ν&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:mfenced&gt; &lt;m:mo&gt;+&lt;/m:mo&gt; &lt;m:munder&gt; &lt;m:mrow&gt; &lt;m:mo&gt;∫&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;∂&lt;/m:mi&gt; &lt;m:mi&gt;M&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:munder&gt; &lt;m:mi&gt;f&lt;/m:mi&gt; &lt;m:mo&gt;≥&lt;/m:mo&gt; &lt;m:msubsup&gt; &lt;m:mrow&gt; &lt;m:mi&gt;ω&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;n&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mfrac&gt; &lt;m:mrow&gt; &lt;m:mn&gt;1&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;n&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:mfrac&gt; &lt;/m:mrow&gt; &lt;/m:msubsup&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mfenced close=\")\" open=\"(\"&gt; &lt;m:mrow","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"32 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140579431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Moving planes and sliding methods for fractional elliptic and parabolic equations 分式椭圆和抛物方程的移动平面和滑动方法
IF 1.8 2区 数学
Advanced Nonlinear Studies Pub Date : 2024-03-19 DOI: 10.1515/ans-2022-0069
Wenxiong Chen, Yeyao Hu, Lingwei Ma
{"title":"Moving planes and sliding methods for fractional elliptic and parabolic equations","authors":"Wenxiong Chen, Yeyao Hu, Lingwei Ma","doi":"10.1515/ans-2022-0069","DOIUrl":"https://doi.org/10.1515/ans-2022-0069","url":null,"abstract":"In this paper, we summarize some of the recent developments in the area of fractional elliptic and parabolic equations with focus on how to apply the sliding method and the method of moving planes to obtain qualitative properties of solutions. We will compare the two methods and point out the pros and cons of each. We will demonstrate how to modify the ideas and techniques in studying fractional elliptic equations and then to employ them to investigate fractional parabolic problems. Besides deriving monotonicity of solutions, some other applications of the sliding method will be illustrated. These results have more or less appeared in a series of previous literatures, in which the ideas were usually submerged in detailed calculations. What we are trying to do here is to single out these ideas and illuminate the inner connections among them by using figures and intuitive languages, so that the readers can see the whole picture and quickly grasp the essence of these useful methods and will be able to apply them to solve a variety of other fractional elliptic and parabolic problems.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"1 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140168008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信