增加功率导致强非线性椭圆耦合系统的双边解

IF 2.1 2区 数学 Q1 MATHEMATICS
Francisco Ortegón Gallego, Mohamed Rhoudaf, Hajar Talbi
{"title":"增加功率导致强非线性椭圆耦合系统的双边解","authors":"Francisco Ortegón Gallego, Mohamed Rhoudaf, Hajar Talbi","doi":"10.1515/ans-2023-0133","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze the following nonlinear elliptic problem <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mfenced close=\"\" open=\"{\"> <m:mrow> <m:mtable> <m:mtr> <m:mtd columnalign=\"left\"> <m:mi>A</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mi>ρ</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>∇</m:mi> <m:mi>φ</m:mi> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mtext> in </m:mtext> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>,</m:mo> <m:mspace width=\"1em\" /> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:mtext>div</m:mtext> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>ρ</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mi>∇</m:mi> <m:mi>φ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> <m:mtext> in </m:mtext> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>,</m:mo> <m:mspace width=\"1em\" /> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mn>0</m:mn> <m:mtext> on </m:mtext> <m:mi>∂</m:mi> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>,</m:mo> <m:mspace width=\"1em\" /> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:mi>φ</m:mi> <m:mo>=</m:mo> <m:msub> <m:mrow> <m:mi>φ</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mtext> on </m:mtext> <m:mi>∂</m:mi> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>.</m:mo> <m:mspace width=\"1em\" /> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:mfenced> </m:math> <jats:tex-math>$\\begin{cases}A\\left(u\\right)=\\rho \\left(u\\right)\\vert \\nabla \\varphi {\\vert }^{2}\\,\\text{in}\\,{\\Omega},\\quad \\hfill \\\\ \\text{div}\\left(\\rho \\left(u\\right)\\nabla \\varphi \\right)=0\\,\\text{in}\\,{\\Omega},\\quad \\hfill \\\\ u=0\\,\\text{on}\\,\\partial {\\Omega},\\quad \\hfill \\\\ \\varphi ={\\varphi }_{0}\\,\\text{on}\\,\\partial {\\Omega}.\\quad \\hfill \\end{cases}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0133_ineq_001.png\" /> </jats:alternatives> </jats:inline-formula> where <jats:italic>A</jats:italic>(<jats:italic>u</jats:italic>) = −div <jats:italic>a</jats:italic>(<jats:italic>x</jats:italic>, <jats:italic>u</jats:italic>, ∇<jats:italic>u</jats:italic>) is a Leray-Lions operator of order <jats:italic>p</jats:italic>. The second member of the first equation is only in <jats:italic>L</jats:italic> <jats:sup>1</jats:sup>(Ω). We prove the existence of a bilateral solution by an approximation procedure, the keypoint being a penalization technique.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"9 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Increase of power leads to a bilateral solution to a strongly nonlinear elliptic coupled system\",\"authors\":\"Francisco Ortegón Gallego, Mohamed Rhoudaf, Hajar Talbi\",\"doi\":\"10.1515/ans-2023-0133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we analyze the following nonlinear elliptic problem <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:mfenced close=\\\"\\\" open=\\\"{\\\"> <m:mrow> <m:mtable> <m:mtr> <m:mtd columnalign=\\\"left\\\"> <m:mi>A</m:mi> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mi>ρ</m:mi> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> <m:mi>∇</m:mi> <m:mi>φ</m:mi> <m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mtext> in </m:mtext> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mo>,</m:mo> <m:mspace width=\\\"1em\\\" /> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\\\"left\\\"> <m:mtext>div</m:mtext> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>ρ</m:mi> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mi>∇</m:mi> <m:mi>φ</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> <m:mtext> in </m:mtext> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mo>,</m:mo> <m:mspace width=\\\"1em\\\" /> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\\\"left\\\"> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mn>0</m:mn> <m:mtext> on </m:mtext> <m:mi>∂</m:mi> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mo>,</m:mo> <m:mspace width=\\\"1em\\\" /> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\\\"left\\\"> <m:mi>φ</m:mi> <m:mo>=</m:mo> <m:msub> <m:mrow> <m:mi>φ</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mtext> on </m:mtext> <m:mi>∂</m:mi> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mo>.</m:mo> <m:mspace width=\\\"1em\\\" /> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:mfenced> </m:math> <jats:tex-math>$\\\\begin{cases}A\\\\left(u\\\\right)=\\\\rho \\\\left(u\\\\right)\\\\vert \\\\nabla \\\\varphi {\\\\vert }^{2}\\\\,\\\\text{in}\\\\,{\\\\Omega},\\\\quad \\\\hfill \\\\\\\\ \\\\text{div}\\\\left(\\\\rho \\\\left(u\\\\right)\\\\nabla \\\\varphi \\\\right)=0\\\\,\\\\text{in}\\\\,{\\\\Omega},\\\\quad \\\\hfill \\\\\\\\ u=0\\\\,\\\\text{on}\\\\,\\\\partial {\\\\Omega},\\\\quad \\\\hfill \\\\\\\\ \\\\varphi ={\\\\varphi }_{0}\\\\,\\\\text{on}\\\\,\\\\partial {\\\\Omega}.\\\\quad \\\\hfill \\\\end{cases}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0133_ineq_001.png\\\" /> </jats:alternatives> </jats:inline-formula> where <jats:italic>A</jats:italic>(<jats:italic>u</jats:italic>) = −div <jats:italic>a</jats:italic>(<jats:italic>x</jats:italic>, <jats:italic>u</jats:italic>, ∇<jats:italic>u</jats:italic>) is a Leray-Lions operator of order <jats:italic>p</jats:italic>. The second member of the first equation is only in <jats:italic>L</jats:italic> <jats:sup>1</jats:sup>(Ω). We prove the existence of a bilateral solution by an approximation procedure, the keypoint being a penalization technique.\",\"PeriodicalId\":7191,\"journal\":{\"name\":\"Advanced Nonlinear Studies\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nonlinear Studies\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ans-2023-0133\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2023-0133","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了以下非线性椭圆问题 A ( u ) = ρ ( u ) |∇ φ | 2 in Ω , div ( ρ ( u )∇ φ ) = 0 in Ω , u = 0 on ∂ Ω , φ = φ 0 on ∂ Ω 。 $\begin{cases}A\left(u\right)=\rho \left(u\right)\vert \nabla \varphi {\vert }^{2}\,\text{in}\,{\Omega},\quad \hfill \\text{div}\left(\rho \left(u\right)\nabla \varphi \right)=0\、\u=0\\text{on}\partial {\Omega}\quad\hfill \\varphi =\{varphi }_{0}\\text{on}\\partial {\Omega}.\其中 A(u) = -div a(x, u,∇u) 是阶数为 p 的勒雷-狮子算子。我们通过近似过程证明了双边解的存在,关键点在于惩罚技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Increase of power leads to a bilateral solution to a strongly nonlinear elliptic coupled system
In this paper, we analyze the following nonlinear elliptic problem A ( u ) = ρ ( u ) | φ | 2 in Ω , div ( ρ ( u ) φ ) = 0 in Ω , u = 0 on Ω , φ = φ 0 on Ω . $\begin{cases}A\left(u\right)=\rho \left(u\right)\vert \nabla \varphi {\vert }^{2}\,\text{in}\,{\Omega},\quad \hfill \\ \text{div}\left(\rho \left(u\right)\nabla \varphi \right)=0\,\text{in}\,{\Omega},\quad \hfill \\ u=0\,\text{on}\,\partial {\Omega},\quad \hfill \\ \varphi ={\varphi }_{0}\,\text{on}\,\partial {\Omega}.\quad \hfill \end{cases}$ where A(u) = −div a(x, u, ∇u) is a Leray-Lions operator of order p. The second member of the first equation is only in L 1(Ω). We prove the existence of a bilateral solution by an approximation procedure, the keypoint being a penalization technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信