求助PDF
{"title":"增加功率导致强非线性椭圆耦合系统的双边解","authors":"Francisco Ortegón Gallego, Mohamed Rhoudaf, Hajar Talbi","doi":"10.1515/ans-2023-0133","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze the following nonlinear elliptic problem <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mfenced close=\"\" open=\"{\"> <m:mrow> <m:mtable> <m:mtr> <m:mtd columnalign=\"left\"> <m:mi>A</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mi>ρ</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>∇</m:mi> <m:mi>φ</m:mi> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mtext> in </m:mtext> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>,</m:mo> <m:mspace width=\"1em\" /> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:mtext>div</m:mtext> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>ρ</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mi>∇</m:mi> <m:mi>φ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> <m:mtext> in </m:mtext> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>,</m:mo> <m:mspace width=\"1em\" /> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mn>0</m:mn> <m:mtext> on </m:mtext> <m:mi>∂</m:mi> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>,</m:mo> <m:mspace width=\"1em\" /> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:mi>φ</m:mi> <m:mo>=</m:mo> <m:msub> <m:mrow> <m:mi>φ</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mtext> on </m:mtext> <m:mi>∂</m:mi> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>.</m:mo> <m:mspace width=\"1em\" /> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:mfenced> </m:math> <jats:tex-math>$\\begin{cases}A\\left(u\\right)=\\rho \\left(u\\right)\\vert \\nabla \\varphi {\\vert }^{2}\\,\\text{in}\\,{\\Omega},\\quad \\hfill \\\\ \\text{div}\\left(\\rho \\left(u\\right)\\nabla \\varphi \\right)=0\\,\\text{in}\\,{\\Omega},\\quad \\hfill \\\\ u=0\\,\\text{on}\\,\\partial {\\Omega},\\quad \\hfill \\\\ \\varphi ={\\varphi }_{0}\\,\\text{on}\\,\\partial {\\Omega}.\\quad \\hfill \\end{cases}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0133_ineq_001.png\" /> </jats:alternatives> </jats:inline-formula> where <jats:italic>A</jats:italic>(<jats:italic>u</jats:italic>) = −div <jats:italic>a</jats:italic>(<jats:italic>x</jats:italic>, <jats:italic>u</jats:italic>, ∇<jats:italic>u</jats:italic>) is a Leray-Lions operator of order <jats:italic>p</jats:italic>. The second member of the first equation is only in <jats:italic>L</jats:italic> <jats:sup>1</jats:sup>(Ω). We prove the existence of a bilateral solution by an approximation procedure, the keypoint being a penalization technique.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"9 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Increase of power leads to a bilateral solution to a strongly nonlinear elliptic coupled system\",\"authors\":\"Francisco Ortegón Gallego, Mohamed Rhoudaf, Hajar Talbi\",\"doi\":\"10.1515/ans-2023-0133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we analyze the following nonlinear elliptic problem <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:mfenced close=\\\"\\\" open=\\\"{\\\"> <m:mrow> <m:mtable> <m:mtr> <m:mtd columnalign=\\\"left\\\"> <m:mi>A</m:mi> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mi>ρ</m:mi> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> <m:mi>∇</m:mi> <m:mi>φ</m:mi> <m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mtext> in </m:mtext> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mo>,</m:mo> <m:mspace width=\\\"1em\\\" /> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\\\"left\\\"> <m:mtext>div</m:mtext> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>ρ</m:mi> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mi>∇</m:mi> <m:mi>φ</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> <m:mtext> in </m:mtext> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mo>,</m:mo> <m:mspace width=\\\"1em\\\" /> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\\\"left\\\"> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mn>0</m:mn> <m:mtext> on </m:mtext> <m:mi>∂</m:mi> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mo>,</m:mo> <m:mspace width=\\\"1em\\\" /> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\\\"left\\\"> <m:mi>φ</m:mi> <m:mo>=</m:mo> <m:msub> <m:mrow> <m:mi>φ</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mtext> on </m:mtext> <m:mi>∂</m:mi> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mo>.</m:mo> <m:mspace width=\\\"1em\\\" /> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:mfenced> </m:math> <jats:tex-math>$\\\\begin{cases}A\\\\left(u\\\\right)=\\\\rho \\\\left(u\\\\right)\\\\vert \\\\nabla \\\\varphi {\\\\vert }^{2}\\\\,\\\\text{in}\\\\,{\\\\Omega},\\\\quad \\\\hfill \\\\\\\\ \\\\text{div}\\\\left(\\\\rho \\\\left(u\\\\right)\\\\nabla \\\\varphi \\\\right)=0\\\\,\\\\text{in}\\\\,{\\\\Omega},\\\\quad \\\\hfill \\\\\\\\ u=0\\\\,\\\\text{on}\\\\,\\\\partial {\\\\Omega},\\\\quad \\\\hfill \\\\\\\\ \\\\varphi ={\\\\varphi }_{0}\\\\,\\\\text{on}\\\\,\\\\partial {\\\\Omega}.\\\\quad \\\\hfill \\\\end{cases}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0133_ineq_001.png\\\" /> </jats:alternatives> </jats:inline-formula> where <jats:italic>A</jats:italic>(<jats:italic>u</jats:italic>) = −div <jats:italic>a</jats:italic>(<jats:italic>x</jats:italic>, <jats:italic>u</jats:italic>, ∇<jats:italic>u</jats:italic>) is a Leray-Lions operator of order <jats:italic>p</jats:italic>. The second member of the first equation is only in <jats:italic>L</jats:italic> <jats:sup>1</jats:sup>(Ω). We prove the existence of a bilateral solution by an approximation procedure, the keypoint being a penalization technique.\",\"PeriodicalId\":7191,\"journal\":{\"name\":\"Advanced Nonlinear Studies\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nonlinear Studies\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ans-2023-0133\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2023-0133","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Increase of power leads to a bilateral solution to a strongly nonlinear elliptic coupled system
In this paper, we analyze the following nonlinear elliptic problem A ( u ) = ρ ( u ) | ∇ φ | 2 in Ω , div ( ρ ( u ) ∇ φ ) = 0 in Ω , u = 0 on ∂ Ω , φ = φ 0 on ∂ Ω . $\begin{cases}A\left(u\right)=\rho \left(u\right)\vert \nabla \varphi {\vert }^{2}\,\text{in}\,{\Omega},\quad \hfill \\ \text{div}\left(\rho \left(u\right)\nabla \varphi \right)=0\,\text{in}\,{\Omega},\quad \hfill \\ u=0\,\text{on}\,\partial {\Omega},\quad \hfill \\ \varphi ={\varphi }_{0}\,\text{on}\,\partial {\Omega}.\quad \hfill \end{cases}$ where A (u ) = −div a (x , u , ∇u ) is a Leray-Lions operator of order p . The second member of the first equation is only in L 1 (Ω). We prove the existence of a bilateral solution by an approximation procedure, the keypoint being a penalization technique.