Multiple concentrating solutions for a fractional (p, q)-Choquard equation
IF 2.1
2区 数学
Q1 MATHEMATICS
Vincenzo Ambrosio
求助PDF
{"title":"Multiple concentrating solutions for a fractional (p, q)-Choquard equation","authors":"Vincenzo Ambrosio","doi":"10.1515/ans-2023-0125","DOIUrl":null,"url":null,"abstract":"We focus on the following fractional (<jats:italic>p</jats:italic>, <jats:italic>q</jats:italic>)-Choquard problem: <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mfenced open=\"{\" close=\"\"> <m:mrow> <m:mtable> <m:mtr> <m:mtd columnalign=\"left\"> <m:msubsup> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> </m:msubsup> <m:mi>u</m:mi> <m:mo>+</m:mo> <m:msubsup> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> </m:msubsup> <m:mi>u</m:mi> <m:mo>+</m:mo> <m:mi>V</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>ε</m:mi> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>u</m:mi> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>u</m:mi> <m:mo>+</m:mo> <m:mo stretchy=\"false\">|</m:mo> <m:mi>u</m:mi> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mrow> <m:mi>q</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mfenced open=\"(\" close=\")\"> <m:mrow> <m:mfrac> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>x</m:mi> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mrow> <m:mi>μ</m:mi> </m:mrow> </m:msup> </m:mrow> </m:mfrac> <m:mo>*</m:mo> <m:mi>F</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mfenced> <m:mi>f</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mspace width=\"0.17em\" /> <m:mtext> in </m:mtext> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> <m:mo>,</m:mo> <m:mspace width=\"1em\" /> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:mi>u</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi>W</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> <m:mo>,</m:mo> <m:mi>p</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>∩</m:mo> <m:msup> <m:mrow> <m:mi>W</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> <m:mo>,</m:mo> <m:mi>q</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mspace width=\"0.17em\" /> <m:mi>u</m:mi> <m:mo>></m:mo> <m:mn>0</m:mn> <m:mtext> in </m:mtext> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> <m:mo>,</m:mo> <m:mspace width=\"1em\" /> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:mfenced> </m:math> <jats:tex-math> $\\begin{cases}{\\left(-{\\Delta}\\right)}_{p}^{s}u+{\\left(-{\\Delta}\\right)}_{q}^{s}u+V\\left(\\varepsilon x\\right)\\left(\\vert u{\\vert }^{p-2}u+\\vert u{\\vert }^{q-2}u\\right)=\\left(\\frac{1}{\\vert x{\\vert }^{\\mu }}{\\ast}F\\left(u\\right)\\right)f\\left(u\\right) \\,\\text{in}\\,{\\mathbb{R}}^{N},\\quad \\hfill \\\\ u\\in {W}^{s,p}\\left({\\mathbb{R}}^{N}\\right)\\cap {W}^{s,q}\\left({\\mathbb{R}}^{N}\\right), u{ >}0\\,\\text{in}\\,{\\mathbb{R}}^{N},\\quad \\hfill \\end{cases}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0125_ineq_001.png\" /> </jats:alternatives> </jats:inline-formula> where <jats:italic>ɛ</jats:italic> > 0 is a small parameter, 0 < <jats:italic>s</jats:italic> < 1, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mn>1</m:mn> <m:mo><</m:mo> <m:mi>p</m:mi> <m:mo><</m:mo> <m:mi>q</m:mi> <m:mo><</m:mo> <m:mfrac> <m:mrow> <m:mi>N</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> </m:mfrac> </m:math> <jats:tex-math> $1{< }p{< }q{< }\\frac{N}{s}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0125_ineq_002.png\" /> </jats:alternatives> </jats:inline-formula>, 0 < <jats:italic>μ</jats:italic> < <jats:italic>sp</jats:italic>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>r</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> </m:msubsup> </m:math> <jats:tex-math> ${\\left(-{\\Delta}\\right)}_{r}^{s}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0125_ineq_003.png\" /> </jats:alternatives> </jats:inline-formula>, with <jats:italic>r</jats:italic> ∈ {<jats:italic>p</jats:italic>, <jats:italic>q</jats:italic>}, is the fractional <jats:italic>r</jats:italic>-Laplacian operator, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>V</m:mi> <m:mo>:</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> <m:mo>→</m:mo> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:math> <jats:tex-math> $V:{\\mathbb{R}}^{N}\\to \\mathbb{R}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0125_ineq_004.png\" /> </jats:alternatives> </jats:inline-formula> is a positive continuous potential satisfying a local condition, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>f</m:mi> <m:mo>:</m:mo> <m:mi mathvariant=\"double-struck\">R</m:mi> <m:mo>→</m:mo> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:math> <jats:tex-math> $f:\\mathbb{R}\\to \\mathbb{R}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0125_ineq_005.png\" /> </jats:alternatives> </jats:inline-formula> is a continuous nonlinearity with subcritical growth at infinity and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>F</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msubsup> <m:mrow> <m:mo>∫</m:mo> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mi>t</m:mi> </m:mrow> </m:msubsup> <m:mi>f</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>τ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mspace width=\"0.17em\" /> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>τ</m:mi> </m:math> <jats:tex-math> $F\\left(t\\right)={\\int }_{0}^{t}f\\left(\\tau \\right) \\mathrm{d}\\tau $ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0125_ineq_006.png\" /> </jats:alternatives> </jats:inline-formula>. Applying suitable variational and topological methods, we relate the number of solutions with the topology of the set where the potential <jats:italic>V</jats:italic> attains its minimum value.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"89 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2023-0125","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Abstract
We focus on the following fractional (p , q )-Choquard problem: ( − Δ ) p s u + ( − Δ ) q s u + V ( ε x ) ( | u | p − 2 u + | u | q − 2 u ) = 1 | x | μ * F ( u ) f ( u ) in R N , u ∈ W s , p ( R N ) ∩ W s , q ( R N ) , u > 0 in R N , $\begin{cases}{\left(-{\Delta}\right)}_{p}^{s}u+{\left(-{\Delta}\right)}_{q}^{s}u+V\left(\varepsilon x\right)\left(\vert u{\vert }^{p-2}u+\vert u{\vert }^{q-2}u\right)=\left(\frac{1}{\vert x{\vert }^{\mu }}{\ast}F\left(u\right)\right)f\left(u\right) \,\text{in}\,{\mathbb{R}}^{N},\quad \hfill \\ u\in {W}^{s,p}\left({\mathbb{R}}^{N}\right)\cap {W}^{s,q}\left({\mathbb{R}}^{N}\right), u{ >}0\,\text{in}\,{\mathbb{R}}^{N},\quad \hfill \end{cases}$ where ɛ > 0 is a small parameter, 0 < s < 1, 1 < p < q < N s $1{< }p{< }q{< }\frac{N}{s}$ , 0 < μ < sp , ( − Δ ) r s ${\left(-{\Delta}\right)}_{r}^{s}$ , with r ∈ {p , q }, is the fractional r -Laplacian operator, V : R N → R $V:{\mathbb{R}}^{N}\to \mathbb{R}$ is a positive continuous potential satisfying a local condition, f : R → R $f:\mathbb{R}\to \mathbb{R}$ is a continuous nonlinearity with subcritical growth at infinity and F ( t ) = ∫ 0 t f ( τ ) d τ $F\left(t\right)={\int }_{0}^{t}f\left(\tau \right) \mathrm{d}\tau $ . Applying suitable variational and topological methods, we relate the number of solutions with the topology of the set where the potential V attains its minimum value.
分数(p,q)-邱卡方程的多重集中解
我们重点研究以下分式 (p, q) - 肖卡问题: ( - Δ ) p s u + ( - Δ ) q s u + V ( ε x ) ( | u | p - 2 u + | u | q - 2 u ) = 1 | x | μ * F ( u ) f ( u ) in R N , u ∈ W s , p ( R N ) ∩ W s , q ( R N ) , u >;在 R N 中为 0 、 $\begin{cases}{\left(-{\Delta}\right)}_{p}^{s}u+{\left(-{\Delta}\right)}_{q}^{s}u+V\left(\varepsilon x\right)\left(\vert u{\vert }^{p-2}u+vert u{vert }^{q-2}u\right)=\left(\frac{1}{vert x{vert }^{\mu }}{ast}F\left(u\right)\right)f\left(u\right)\、\u\in {W}^{s,p}\left({mathbb{R}}^{N}\right)\cap {W}^{s,q}\left({\mathbb{R}}^{N}\right), u{ >;}0\\text{in}\,{\mathbb{R}}^{N},\quad\hfill\end{cases}$ 其中 ɛ > 0 是一个小参数,0 < s < 1, 1 < p < q < N s $1{< }p{< }q{<;}\frac{N}{s}$ , 0 < μ < sp, ( - Δ ) r s ${left(-{\Delta}\right)}_{r}^{s}$ , r∈ {p, q}, 是分数 r 拉普拉斯算子, V : R N → R $V:{mathbb{R}}^{N}\to \mathbb{R}$ 是满足局部条件的正连续势,f :R → R $f:\mathbb{R}\to\mathbb{R}$ 是一个连续的非线性,在无穷远处有亚临界增长,并且 F ( t ) = ∫ 0 t f ( τ ) d τ $F\left(t\right)={int }_{0}^{t}f\left(\tau \right) \mathrm{d}\tau $ 。应用合适的变分法和拓扑法,我们将解的数量与势 V 达到最小值的集合的拓扑关系联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。