Multiple concentrating solutions for a fractional (p, q)-Choquard equation

IF 2.1 2区 数学 Q1 MATHEMATICS
Vincenzo Ambrosio
{"title":"Multiple concentrating solutions for a fractional (p, q)-Choquard equation","authors":"Vincenzo Ambrosio","doi":"10.1515/ans-2023-0125","DOIUrl":null,"url":null,"abstract":"We focus on the following fractional (<jats:italic>p</jats:italic>, <jats:italic>q</jats:italic>)-Choquard problem: <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mfenced open=\"{\" close=\"\"> <m:mrow> <m:mtable> <m:mtr> <m:mtd columnalign=\"left\"> <m:msubsup> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> </m:msubsup> <m:mi>u</m:mi> <m:mo>+</m:mo> <m:msubsup> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> </m:msubsup> <m:mi>u</m:mi> <m:mo>+</m:mo> <m:mi>V</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>ε</m:mi> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>u</m:mi> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>u</m:mi> <m:mo>+</m:mo> <m:mo stretchy=\"false\">|</m:mo> <m:mi>u</m:mi> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mrow> <m:mi>q</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mfenced open=\"(\" close=\")\"> <m:mrow> <m:mfrac> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>x</m:mi> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mrow> <m:mi>μ</m:mi> </m:mrow> </m:msup> </m:mrow> </m:mfrac> <m:mo>*</m:mo> <m:mi>F</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mfenced> <m:mi>f</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mspace width=\"0.17em\" /> <m:mtext> in </m:mtext> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> <m:mo>,</m:mo> <m:mspace width=\"1em\" /> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:mi>u</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi>W</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> <m:mo>,</m:mo> <m:mi>p</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>∩</m:mo> <m:msup> <m:mrow> <m:mi>W</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> <m:mo>,</m:mo> <m:mi>q</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mspace width=\"0.17em\" /> <m:mi>u</m:mi> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> <m:mtext> in </m:mtext> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> <m:mo>,</m:mo> <m:mspace width=\"1em\" /> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:mfenced> </m:math> <jats:tex-math> $\\begin{cases}{\\left(-{\\Delta}\\right)}_{p}^{s}u+{\\left(-{\\Delta}\\right)}_{q}^{s}u+V\\left(\\varepsilon x\\right)\\left(\\vert u{\\vert }^{p-2}u+\\vert u{\\vert }^{q-2}u\\right)=\\left(\\frac{1}{\\vert x{\\vert }^{\\mu }}{\\ast}F\\left(u\\right)\\right)f\\left(u\\right) \\,\\text{in}\\,{\\mathbb{R}}^{N},\\quad \\hfill \\\\ u\\in {W}^{s,p}\\left({\\mathbb{R}}^{N}\\right)\\cap {W}^{s,q}\\left({\\mathbb{R}}^{N}\\right), u{ &gt;}0\\,\\text{in}\\,{\\mathbb{R}}^{N},\\quad \\hfill \\end{cases}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0125_ineq_001.png\" /> </jats:alternatives> </jats:inline-formula> where <jats:italic>ɛ</jats:italic> &gt; 0 is a small parameter, 0 &lt; <jats:italic>s</jats:italic> &lt; 1, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mn>1</m:mn> <m:mo>&lt;</m:mo> <m:mi>p</m:mi> <m:mo>&lt;</m:mo> <m:mi>q</m:mi> <m:mo>&lt;</m:mo> <m:mfrac> <m:mrow> <m:mi>N</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> </m:mfrac> </m:math> <jats:tex-math> $1{&lt; }p{&lt; }q{&lt; }\\frac{N}{s}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0125_ineq_002.png\" /> </jats:alternatives> </jats:inline-formula>, 0 &lt; <jats:italic>μ</jats:italic> &lt; <jats:italic>sp</jats:italic>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>r</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> </m:msubsup> </m:math> <jats:tex-math> ${\\left(-{\\Delta}\\right)}_{r}^{s}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0125_ineq_003.png\" /> </jats:alternatives> </jats:inline-formula>, with <jats:italic>r</jats:italic> ∈ {<jats:italic>p</jats:italic>, <jats:italic>q</jats:italic>}, is the fractional <jats:italic>r</jats:italic>-Laplacian operator, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>V</m:mi> <m:mo>:</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> <m:mo>→</m:mo> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:math> <jats:tex-math> $V:{\\mathbb{R}}^{N}\\to \\mathbb{R}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0125_ineq_004.png\" /> </jats:alternatives> </jats:inline-formula> is a positive continuous potential satisfying a local condition, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>f</m:mi> <m:mo>:</m:mo> <m:mi mathvariant=\"double-struck\">R</m:mi> <m:mo>→</m:mo> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:math> <jats:tex-math> $f:\\mathbb{R}\\to \\mathbb{R}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0125_ineq_005.png\" /> </jats:alternatives> </jats:inline-formula> is a continuous nonlinearity with subcritical growth at infinity and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>F</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msubsup> <m:mrow> <m:mo>∫</m:mo> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mi>t</m:mi> </m:mrow> </m:msubsup> <m:mi>f</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>τ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mspace width=\"0.17em\" /> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>τ</m:mi> </m:math> <jats:tex-math> $F\\left(t\\right)={\\int }_{0}^{t}f\\left(\\tau \\right) \\mathrm{d}\\tau $ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0125_ineq_006.png\" /> </jats:alternatives> </jats:inline-formula>. Applying suitable variational and topological methods, we relate the number of solutions with the topology of the set where the potential <jats:italic>V</jats:italic> attains its minimum value.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"89 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2023-0125","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We focus on the following fractional (p, q)-Choquard problem: ( Δ ) p s u + ( Δ ) q s u + V ( ε x ) ( | u | p 2 u + | u | q 2 u ) = 1 | x | μ * F ( u ) f ( u ) in R N , u W s , p ( R N ) W s , q ( R N ) , u > 0 in R N , $\begin{cases}{\left(-{\Delta}\right)}_{p}^{s}u+{\left(-{\Delta}\right)}_{q}^{s}u+V\left(\varepsilon x\right)\left(\vert u{\vert }^{p-2}u+\vert u{\vert }^{q-2}u\right)=\left(\frac{1}{\vert x{\vert }^{\mu }}{\ast}F\left(u\right)\right)f\left(u\right) \,\text{in}\,{\mathbb{R}}^{N},\quad \hfill \\ u\in {W}^{s,p}\left({\mathbb{R}}^{N}\right)\cap {W}^{s,q}\left({\mathbb{R}}^{N}\right), u{ >}0\,\text{in}\,{\mathbb{R}}^{N},\quad \hfill \end{cases}$ where ɛ > 0 is a small parameter, 0 < s < 1, 1 < p < q < N s $1{< }p{< }q{< }\frac{N}{s}$ , 0 < μ < sp, ( Δ ) r s ${\left(-{\Delta}\right)}_{r}^{s}$ , with r ∈ {p, q}, is the fractional r-Laplacian operator, V : R N R $V:{\mathbb{R}}^{N}\to \mathbb{R}$ is a positive continuous potential satisfying a local condition, f : R R $f:\mathbb{R}\to \mathbb{R}$ is a continuous nonlinearity with subcritical growth at infinity and F ( t ) = 0 t f ( τ ) d τ $F\left(t\right)={\int }_{0}^{t}f\left(\tau \right) \mathrm{d}\tau $ . Applying suitable variational and topological methods, we relate the number of solutions with the topology of the set where the potential V attains its minimum value.
分数(p,q)-邱卡方程的多重集中解
我们重点研究以下分式 (p, q) - 肖卡问题: ( - Δ ) p s u + ( - Δ ) q s u + V ( ε x ) ( | u | p - 2 u + | u | q - 2 u ) = 1 | x | μ * F ( u ) f ( u ) in R N , u ∈ W s , p ( R N ) ∩ W s , q ( R N ) , u >;在 R N 中为 0 、 $\begin{cases}{\left(-{\Delta}\right)}_{p}^{s}u+{\left(-{\Delta}\right)}_{q}^{s}u+V\left(\varepsilon x\right)\left(\vert u{\vert }^{p-2}u+vert u{vert }^{q-2}u\right)=\left(\frac{1}{vert x{vert }^{\mu }}{ast}F\left(u\right)\right)f\left(u\right)\、\u\in {W}^{s,p}\left({mathbb{R}}^{N}\right)\cap {W}^{s,q}\left({\mathbb{R}}^{N}\right), u{ >;}0\\text{in}\,{\mathbb{R}}^{N},\quad\hfill\end{cases}$ 其中 ɛ > 0 是一个小参数,0 < s < 1, 1 < p < q < N s $1{< }p{< }q{<;}\frac{N}{s}$ , 0 < μ < sp, ( - Δ ) r s ${left(-{\Delta}\right)}_{r}^{s}$ , r∈ {p, q}, 是分数 r 拉普拉斯算子, V : R N → R $V:{mathbb{R}}^{N}\to \mathbb{R}$ 是满足局部条件的正连续势,f :R → R $f:\mathbb{R}\to\mathbb{R}$ 是一个连续的非线性,在无穷远处有亚临界增长,并且 F ( t ) = ∫ 0 t f ( τ ) d τ $F\left(t\right)={int }_{0}^{t}f\left(\tau \right) \mathrm{d}\tau $ 。应用合适的变分法和拓扑法,我们将解的数量与势 V 达到最小值的集合的拓扑关系联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信