A degenerate migration-consumption model in domains of arbitrary dimension

IF 2.1 2区 数学 Q1 MATHEMATICS
Michael Winkler
{"title":"A degenerate migration-consumption model in domains of arbitrary dimension","authors":"Michael Winkler","doi":"10.1515/ans-2023-0131","DOIUrl":null,"url":null,"abstract":"In a smoothly bounded convex domain <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>⊂</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>${\\Omega}\\subset {\\mathbb{R}}^{n}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0131_ineq_001.png\"/> </jats:alternatives> </jats:inline-formula> with <jats:italic>n</jats:italic> ≥ 1, a no-flux initial-boundary value problem for<jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\" overflow=\"scroll\"> <m:mfenced close=\"\" open=\"{\"> <m:mrow> <m:mtable> <m:mtr> <m:mtd columnalign=\"left\"> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>t</m:mi> </m:mrow> </m:msub> <m:mo>=</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mfenced close=\")\" open=\"(\"> <m:mrow> <m:mi>u</m:mi> <m:mi>ϕ</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>v</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mfenced> <m:mo>,</m:mo> <m:mspace width=\"1em\"/> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:msub> <m:mrow> <m:mi>v</m:mi> </m:mrow> <m:mrow> <m:mi>t</m:mi> </m:mrow> </m:msub> <m:mo>=</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mi>v</m:mi> <m:mo>−</m:mo> <m:mi>u</m:mi> <m:mi>v</m:mi> <m:mo>,</m:mo> <m:mspace width=\"1em\"/> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:mfenced> </m:math> <jats:tex-math>$$\\begin{cases}_{t}={\\Delta}\\left(u\\phi \\left(v\\right)\\right),\\quad \\hfill \\\\ {v}_{t}={\\Delta}v-uv,\\quad \\hfill \\end{cases}$$</jats:tex-math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0131_eq_999.png\"/> </jats:alternatives> </jats:disp-formula>is considered under the assumption that near the origin, the function <jats:italic>ϕ</jats:italic> suitably generalizes the prototype given by<jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\" overflow=\"scroll\"> <m:mi>ϕ</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>ξ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msup> <m:mrow> <m:mi>ξ</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msup> <m:mo>,</m:mo> <m:mspace width=\"2em\"/> <m:mi>ξ</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>ξ</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> </m:mrow> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> <m:mo>.</m:mo> </m:math> <jats:tex-math>$$\\phi \\left(\\xi \\right)={\\xi }^{\\alpha },\\qquad \\xi \\in \\left[0,{\\xi }_{0}\\right].$$</jats:tex-math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0131_eq_998.png\"/> </jats:alternatives> </jats:disp-formula>By means of separate approaches, it is shown that in both cases <jats:italic>α</jats:italic> ∈ (0, 1) and <jats:italic>α</jats:italic> ∈ [1, 2] some global weak solutions exist which, inter alia, satisfy<jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\" overflow=\"scroll\"> <m:mi>C</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>T</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>≔</m:mo> <m:munder> <m:mrow> <m:mtext>ess sup</m:mtext> </m:mrow> <m:mrow> <m:mi>t</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>T</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:munder> <m:msub> <m:mrow> <m:mo>∫</m:mo> </m:mrow> <m:mrow> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:mrow> </m:msub> <m:mi>u</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo>⋅</m:mo> <m:mo>,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mi>ln</m:mi> <m:mo>⁡</m:mo> <m:mi>u</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo>⋅</m:mo> <m:mo>,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>&lt;</m:mo> <m:mi>∞</m:mi> <m:mspace width=\"2em\"/> <m:mtext>for all </m:mtext> <m:mi>T</m:mi> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> </m:math> <jats:tex-math>$$C\\left(T\\right){:=}\\underset{t\\in \\left(0,T\\right)}{\\text{ess\\,sup}}{\\int }_{{\\Omega}}u\\left(\\cdot ,t\\right)\\mathrm{ln}u\\left(\\cdot ,t\\right){&lt; }\\infty \\qquad \\text{for\\,all\\,}T{ &gt;}0,$$</jats:tex-math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0131_eq_997.png\"/> </jats:alternatives> </jats:disp-formula>with sup<jats:sub> <jats:italic>T</jats:italic>&gt;0</jats:sub> <jats:italic>C</jats:italic>(<jats:italic>T</jats:italic>) &lt; ∞ if <jats:italic>α</jats:italic> ∈ [1, 2].","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"64 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2023-0131","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In a smoothly bounded convex domain Ω R n ${\Omega}\subset {\mathbb{R}}^{n}$ with n ≥ 1, a no-flux initial-boundary value problem for u t = Δ u ϕ ( v ) , v t = Δ v u v , $$\begin{cases}_{t}={\Delta}\left(u\phi \left(v\right)\right),\quad \hfill \\ {v}_{t}={\Delta}v-uv,\quad \hfill \end{cases}$$ is considered under the assumption that near the origin, the function ϕ suitably generalizes the prototype given by ϕ ( ξ ) = ξ α , ξ [ 0 , ξ 0 ] . $$\phi \left(\xi \right)={\xi }^{\alpha },\qquad \xi \in \left[0,{\xi }_{0}\right].$$ By means of separate approaches, it is shown that in both cases α ∈ (0, 1) and α ∈ [1, 2] some global weak solutions exist which, inter alia, satisfy C ( T ) ess sup t ( 0 , T ) Ω u ( , t ) ln u ( , t ) < for all T > 0 , $$C\left(T\right){:=}\underset{t\in \left(0,T\right)}{\text{ess\,sup}}{\int }_{{\Omega}}u\left(\cdot ,t\right)\mathrm{ln}u\left(\cdot ,t\right){< }\infty \qquad \text{for\,all\,}T{ >}0,$$ with sup T>0 C(T) < ∞ if α ∈ [1, 2].
任意维度域中的退化迁移-消费模型
在一个 n ≥ 1 的平滑有界凸域 Ω ⊂ R n ${Omega}\subset {\mathbb{R}}^{n}$ 中,对 u t = Δ u ϕ ( v ) , v t = Δ v - u v , $$\begin{cases}_{t}={\Delta}\left(u\phi \left(v\right)\right) 的无流初始边界值问题进行了研究、\quad \hfill \ {v}_{t}={Delta}v-uv,\quad \hfill \end{cases}$$ 是在这样的假设下考虑的,即在原点附近,函数j适当地概括了原型:j ( ξ ) = ξ α , ξ∈ [ 0 , ξ 0 ] 。 $$\phi \left(\xi \right)={\xi }^{α },\qquad \xi \in \left[0,{\xi }_{0}\right].$$ 通过不同的方法表明,在 α∈ (0, 1) 和 α∈ [1, 2] 两种情况下,都存在一些全局弱解,这些弱解满足 C ( T ) ≔ ess sup t∈ ( 0 , T ) ∫ Ω u ( ⋅ , t ) ln u ( ⋅ , t ) < ∞ for all T > 0 , $$C\left(T\right){:=}\underset{t\in \left(0,T\right)}{text{ess\,sup}}{int}_{{\Omega}}u\left(\cdot ,t\right)\mathrm{ln}u\left(\cdot ,t\right){<;}infty \qquad text{for\,all\,}T{ >}0,$$ with sup T>0 C(T) < ∞ if α∈ [1, 2].
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信