在标准球上规定 Q 曲率的新多重性结果

IF 2.1 2区 数学 Q1 MATHEMATICS
Mohamed Ben Ayed, Khalil El Mehdi
{"title":"在标准球上规定 Q 曲率的新多重性结果","authors":"Mohamed Ben Ayed, Khalil El Mehdi","doi":"10.1515/ans-2023-0135","DOIUrl":null,"url":null,"abstract":"In this paper, we study the problem of prescribing <jats:italic>Q</jats:italic>-Curvature on higher dimensional standard spheres. The problem consists in finding the right assumptions on a function <jats:italic>K</jats:italic> so that it is the <jats:italic>Q</jats:italic>-Curvature of a metric conformal to the standard one on the sphere. Using some pinching condition, we track the change in topology that occurs when crossing a critical level (or a virtually critical level if it is a critical point at infinity) and then compute a certain Euler-Poincaré index which allows us to prove the existence of many solutions. The locations of the levels sets of these solutions are determined in a very precise manner. These type of multiplicity results are new and are proved without any assumption of symmetry or periodicity on the function <jats:italic>K</jats:italic>.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"51 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New multiplicity results in prescribing Q-curvature on standard spheres\",\"authors\":\"Mohamed Ben Ayed, Khalil El Mehdi\",\"doi\":\"10.1515/ans-2023-0135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the problem of prescribing <jats:italic>Q</jats:italic>-Curvature on higher dimensional standard spheres. The problem consists in finding the right assumptions on a function <jats:italic>K</jats:italic> so that it is the <jats:italic>Q</jats:italic>-Curvature of a metric conformal to the standard one on the sphere. Using some pinching condition, we track the change in topology that occurs when crossing a critical level (or a virtually critical level if it is a critical point at infinity) and then compute a certain Euler-Poincaré index which allows us to prove the existence of many solutions. The locations of the levels sets of these solutions are determined in a very precise manner. These type of multiplicity results are new and are proved without any assumption of symmetry or periodicity on the function <jats:italic>K</jats:italic>.\",\"PeriodicalId\":7191,\"journal\":{\"name\":\"Advanced Nonlinear Studies\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nonlinear Studies\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ans-2023-0135\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2023-0135","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了在高维标准球面上规定 Q-Curvature 的问题。问题在于找到函数 K 的正确假设,使其成为与球面上标准度量一致的 Q曲率。利用一些捏合条件,我们可以跟踪跨越临界水平(如果是无穷远处的临界点,则为实际上的临界水平)时发生的拓扑变化,然后计算一定的欧拉-平卡指数,从而证明许多解的存在。这些解的水平集位置是以非常精确的方式确定的。这类多重性结果是全新的,无需假设函数 K 的对称性或周期性即可证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New multiplicity results in prescribing Q-curvature on standard spheres
In this paper, we study the problem of prescribing Q-Curvature on higher dimensional standard spheres. The problem consists in finding the right assumptions on a function K so that it is the Q-Curvature of a metric conformal to the standard one on the sphere. Using some pinching condition, we track the change in topology that occurs when crossing a critical level (or a virtually critical level if it is a critical point at infinity) and then compute a certain Euler-Poincaré index which allows us to prove the existence of many solutions. The locations of the levels sets of these solutions are determined in a very precise manner. These type of multiplicity results are new and are proved without any assumption of symmetry or periodicity on the function K.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信