Michael-Simon type inequalities in hyperbolic space H n + 1 ${\mathbb{H}}^{n+1}$ via Brendle-Guan-Li’s flows

IF 2.1 2区 数学 Q1 MATHEMATICS
Jingshi Cui, Peibiao Zhao
{"title":"Michael-Simon type inequalities in hyperbolic space H n + 1 ${\\mathbb{H}}^{n+1}$ via Brendle-Guan-Li’s flows","authors":"Jingshi Cui, Peibiao Zhao","doi":"10.1515/ans-2023-0127","DOIUrl":null,"url":null,"abstract":"In the present paper, we first establish and verify a new sharp hyperbolic version of the Michael-Simon inequality for mean curvatures in hyperbolic space <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">H</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>+</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math>${\\mathbb{H}}^{n+1}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0127_ineq_002.png\" /> </jats:alternatives> </jats:inline-formula> based on the locally constrained inverse curvature flow introduced by Brendle, Guan and Li (“An inverse curvature type hypersurface flow in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">H</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>+</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math>${\\mathbb{H}}^{n+1}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0127_ineq_003.png\" /> </jats:alternatives> </jats:inline-formula>,” (Preprint)) as follows<jats:disp-formula> <jats:label>(0.1)</jats:label> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\" overflow=\"scroll\"> <m:munder> <m:mrow> <m:mo>∫</m:mo> </m:mrow> <m:mrow> <m:mi>M</m:mi> </m:mrow> </m:munder> <m:msup> <m:mrow> <m:mi>λ</m:mi> </m:mrow> <m:mrow> <m:mo>′</m:mo> </m:mrow> </m:msup> <m:msqrt> <m:mrow> <m:msup> <m:mrow> <m:mi>f</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:msubsup> <m:mrow> <m:mi>E</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msubsup> <m:mo>+</m:mo> <m:mo stretchy=\"false\">|</m:mo> <m:msup> <m:mrow> <m:mi>∇</m:mi> </m:mrow> <m:mrow> <m:mi>M</m:mi> </m:mrow> </m:msup> <m:mi>f</m:mi> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> </m:msqrt> <m:mo>−</m:mo> <m:munder> <m:mrow> <m:mo>∫</m:mo> </m:mrow> <m:mrow> <m:mi>M</m:mi> </m:mrow> </m:munder> <m:mfenced close=\"⟩\" open=\"⟨\"> <m:mrow> <m:mrow> <m:mover accent=\"true\"> <m:mrow> <m:mi>∇</m:mi> </m:mrow> <m:mo>̄</m:mo> </m:mover> </m:mrow> <m:mfenced close=\")\" open=\"(\"> <m:mrow> <m:mi>f</m:mi> <m:msup> <m:mrow> <m:mi>λ</m:mi> </m:mrow> <m:mrow> <m:mo>′</m:mo> </m:mrow> </m:msup> </m:mrow> </m:mfenced> <m:mo>,</m:mo> <m:mi>ν</m:mi> </m:mrow> </m:mfenced> <m:mo>+</m:mo> <m:munder> <m:mrow> <m:mo>∫</m:mo> </m:mrow> <m:mrow> <m:mi>∂</m:mi> <m:mi>M</m:mi> </m:mrow> </m:munder> <m:mi>f</m:mi> <m:mo>≥</m:mo> <m:msubsup> <m:mrow> <m:mi>ω</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> <m:mrow> <m:mfrac> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:mfrac> </m:mrow> </m:msubsup> <m:msup> <m:mrow> <m:mfenced close=\")\" open=\"(\"> <m:mrow> <m:munder> <m:mrow> <m:mo>∫</m:mo> </m:mrow> <m:mrow> <m:mi>M</m:mi> </m:mrow> </m:munder> <m:msup> <m:mrow> <m:mi>f</m:mi> </m:mrow> <m:mrow> <m:mfrac> <m:mrow> <m:mi>n</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:mfrac> </m:mrow> </m:msup> </m:mrow> </m:mfenced> </m:mrow> <m:mrow> <m:mfrac> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:mfrac> </m:mrow> </m:msup> </m:math> <jats:tex-math>$$\\underset{M}{\\int }{\\lambda }^{\\prime }\\sqrt{{f}^{2}{E}_{1}^{2}+\\vert {\\nabla }^{M}f{\\vert }^{2}}-\\underset{M}{\\int }\\langle \\bar{\\nabla }\\left(f{\\lambda }^{\\prime }\\right),\\nu \\rangle +\\underset{\\partial M}{\\int }f\\ge {\\omega }_{n}^{\\frac{1}{n}}{\\left(\\underset{M}{\\int }{f}^{\\frac{n}{n-1}}\\right)}^{\\frac{n-1}{n}}$$</jats:tex-math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0127_eq_001.png\" /> </jats:alternatives> </jats:disp-formula>provided that <jats:italic>M</jats:italic> is <jats:italic>h</jats:italic>-convex and <jats:italic>f</jats:italic> is a positive smooth function, where <jats:italic>λ</jats:italic>′(<jats:italic>r</jats:italic>) = cosh<jats:italic>r</jats:italic>. In particular, when <jats:italic>f</jats:italic> is of constant, (0.1) coincides with the Minkowski type inequality stated by Brendle, Hung, and Wang in (“A Minkowski inequality for hypersurfaces in the anti-de Sitter-Schwarzschild manifold,” <jats:italic>Commun. Pure Appl. Math.</jats:italic>, vol. 69, no. 1, pp. 124–144, 2016). Further, we also establish and confirm a new sharp Michael-Simon inequality for the <jats:italic>k</jats:italic>th mean curvatures in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">H</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>+</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math>${\\mathbb{H}}^{n+1}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0127_ineq_004.png\" /> </jats:alternatives> </jats:inline-formula> by virtue of the Brendle-Guan-Li’s flow (“An inverse curvature type hypersurface flow in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">H</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>+</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math>${\\mathbb{H}}^{n+1}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0127_ineq_005.png\" /> </jats:alternatives> </jats:inline-formula>,” (Preprint)) as below<jats:disp-formula> <jats:label>(0.2)</jats:label> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\" overflow=\"scroll\"> <m:mtable columnalign=\"left\"> <m:mtr> <m:mtd columnalign=\"right\" /> <m:mtd columnalign=\"left\"> <m:munder> <m:mrow> <m:mo>∫</m:mo> </m:mrow> <m:mrow> <m:mi>M</m:mi> </m:mrow> </m:munder> <m:msup> <m:mrow> <m:mi>λ</m:mi> </m:mrow> <m:mrow> <m:mo>′</m:mo> </m:mrow> </m:msup> <m:msqrt> <m:mrow> <m:msup> <m:mrow> <m:mi>f</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:msubsup> <m:mrow> <m:mi>E</m:mi> </m:mrow> <m:mrow> <m:mi>k</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msubsup> <m:mo>+</m:mo> <m:mo stretchy=\"false\">|</m:mo> <m:msup> <m:mrow> <m:mi>∇</m:mi> </m:mrow> <m:mrow> <m:mi>M</m:mi> </m:mrow> </m:msup> <m:mi>f</m:mi> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:msubsup> <m:mrow> <m:mi>E</m:mi> </m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msubsup> </m:mrow> </m:msqrt> <m:mo>−</m:mo> <m:munder> <m:mrow> <m:mo>∫</m:mo> </m:mrow> <m:mrow> <m:mi>M</m:mi> </m:mrow> </m:munder> <m:mfenced close=\"⟩\" open=\"⟨\"> <m:mrow> <m:mrow> <m:mover accent=\"true\"> <m:mrow> <m:mi>∇</m:mi> </m:mrow> <m:mo>̄</m:mo> </m:mover> </m:mrow> <m:mfenced close=\")\" open=\"(\"> <m:mrow> <m:mi>f</m:mi> <m:msup> <m:mrow> <m:mi>λ</m:mi> </m:mrow> <m:mrow> <m:mo>′</m:mo> </m:mrow> </m:msup> </m:mrow> </m:mfenced> <m:mo>,</m:mo> <m:mi>ν</m:mi> </m:mrow> </m:mfenced> <m:mo>⋅</m:mo> <m:msub> <m:mrow> <m:mi>E</m:mi> </m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo>+</m:mo> <m:munder> <m:mrow> <m:mo>∫</m:mo> </m:mrow> <m:mrow> <m:mi>∂</m:mi> <m:mi>M</m:mi> </m:mrow> </m:munder> <m:mi>f</m:mi> <m:mo>⋅</m:mo> <m:msub> <m:mrow> <m:mi>E</m:mi> </m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msub> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"right\" /> <m:mtd columnalign=\"left\"> <m:mspace width=\"1em\" /> <m:mo>≥</m:mo> <m:msup> <m:mrow> <m:mfenced close=\")\" open=\"(\"> <m:mrow> <m:msub> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>k</m:mi> </m:mrow> </m:msub> <m:mo>◦</m:mo> <m:msubsup> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>W</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mfenced> </m:mrow> <m:mrow> <m:mfrac> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mi>k</m:mi> <m:mo>+</m:mo> <m:mn>1</m:mn> </m:mrow> </m:mfrac> </m:mrow> </m:msup> <m:msup> <m:mrow> <m:mfenced close=\")\" open=\"(\"> <m:mrow> <m:munder> <m:mrow> <m:mo>∫</m:mo> </m:mrow> <m:mrow> <m:mi>M</m:mi> </m:mrow> </m:munder> <m:msup> <m:mrow> <m:mi>f</m:mi> </m:mrow> <m:mrow> <m:mfrac> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mi>k</m:mi> <m:mo>+</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mi>k</m:mi> </m:mrow> </m:mfrac> </m:mrow> </m:msup> <m:mo>⋅</m:mo> <m:msub> <m:mrow> <m:mi>E</m:mi> </m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msub> </m:mrow> </m:mfenced> </m:mrow> <m:mrow> <m:mfrac> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mi>k</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mi>k</m:mi> <m:mo>+</m:mo> <m:mn>1</m:mn> </m:mrow> </m:mfrac> </m:mrow> </m:msup> </m:mtd> </m:mtr> </m:mtable> </m:math> <jats:tex-math>\\begin{align}\\hfill &amp; \\underset{M}{\\int }{\\lambda }^{\\prime }\\sqrt{{f}^{2}{E}_{k}^{2}+\\vert {\\nabla }^{M}f{\\vert }^{2}{E}_{k-1}^{2}}-\\underset{M}{\\int }\\langle \\bar{\\nabla }\\left(f{\\lambda }^{\\prime }\\right),\\nu \\rangle \\cdot {E}_{k-1}+\\underset{\\partial M}{\\int }f\\cdot {E}_{k-1}\\hfill \\\\ \\hfill &amp; \\quad \\ge {\\left({p}_{k}{\\circ}{q}_{1}^{-1}\\left({W}_{1}\\left({\\Omega}\\right)\\right)\\right)}^{\\frac{1}{n-k+1}}{\\left(\\underset{M}{\\int }{f}^{\\frac{n-k+1}{n-k}}\\cdot {E}_{k-1}\\right)}^{\\frac{n-k}{n-k+1}}\\hfill \\end{align}</jats:tex-math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0127_eq_002.png\" /> </jats:alternatives> </jats:disp-formula>provided that <jats:italic>M</jats:italic> is <jats:italic>h</jats:italic>-convex and Ω is the domain enclosed by <jats:italic>M</jats:italic>, <jats:italic>p</jats:italic> <jats:sub> <jats:italic>k</jats:italic> </jats:sub>(<jats:italic>r</jats:italic>) = <jats:italic>ω</jats:italic> <jats:sub> <jats:italic>n</jats:italic> </jats:sub>(<jats:italic>λ</jats:italic>′)<jats:sup> <jats:italic>k</jats:italic>−1</jats:sup>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msub> <m:mrow> <m:mi>W</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mfrac> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:mfrac> <m:mo stretchy=\"false\">|</m:mo> <m:mi>M</m:mi> <m:mo stretchy=\"false\">|</m:mo> </m:math> <jats:tex-math>${W}_{1}\\left({\\Omega}\\right)=\\frac{1}{n}\\vert M\\vert $</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0127_ineq_006.png\" /> </jats:alternatives> </jats:inline-formula>, <jats:italic>λ</jats:italic>′(<jats:italic>r</jats:italic>) = cosh<jats:italic>r</jats:italic>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msub> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>r</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msub> <m:mrow> <m:mi>W</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mfenced close=\")\" open=\"(\"> <m:mrow> <m:msubsup> <m:mrow> <m:mi>S</m:mi> </m:mrow> <m:mrow> <m:mi>r</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>+</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> </m:mrow> </m:mfenced> </m:math> <jats:tex-math>${q}_{1}\\left(r\\right)={W}_{1}\\left({S}_{r}^{n+1}\\right)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0127_ineq_007.png\" /> </jats:alternatives> </jats:inline-formula>, the area for a geodesic sphere of radius <jats:italic>r</jats:italic>, and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msubsup> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> </m:math> <jats:tex-math>${q}_{1}^{-1}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0127_ineq_008.png\" /> </jats:alternatives> </jats:inline-formula> is the inverse function of <jats:italic>q</jats:italic> <jats:sub>1</jats:sub>. In particular, when <jats:italic>f</jats:italic> is of constant and <jats:italic>k</jats:italic> is odd, (0.2) is exactly the weighted Alexandrov–Fenchel inequalities proven by Hu, Li, and Wei in (“Locally constrained curvature flows and geometric inequalities in hyperbolic space,” <jats:italic>Math. Ann.</jats:italic>, vol. 382, nos. 3–4, pp. 1425–1474, 2022).","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"32 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2023-0127","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the present paper, we first establish and verify a new sharp hyperbolic version of the Michael-Simon inequality for mean curvatures in hyperbolic space H n + 1 ${\mathbb{H}}^{n+1}$ based on the locally constrained inverse curvature flow introduced by Brendle, Guan and Li (“An inverse curvature type hypersurface flow in H n + 1 ${\mathbb{H}}^{n+1}$ ,” (Preprint)) as follows (0.1) M λ f 2 E 1 2 + | M f | 2 M ̄ f λ , ν + M f ω n 1 n M f n n 1 n 1 n $$\underset{M}{\int }{\lambda }^{\prime }\sqrt{{f}^{2}{E}_{1}^{2}+\vert {\nabla }^{M}f{\vert }^{2}}-\underset{M}{\int }\langle \bar{\nabla }\left(f{\lambda }^{\prime }\right),\nu \rangle +\underset{\partial M}{\int }f\ge {\omega }_{n}^{\frac{1}{n}}{\left(\underset{M}{\int }{f}^{\frac{n}{n-1}}\right)}^{\frac{n-1}{n}}$$ provided that M is h-convex and f is a positive smooth function, where λ′(r) = coshr. In particular, when f is of constant, (0.1) coincides with the Minkowski type inequality stated by Brendle, Hung, and Wang in (“A Minkowski inequality for hypersurfaces in the anti-de Sitter-Schwarzschild manifold,” Commun. Pure Appl. Math., vol. 69, no. 1, pp. 124–144, 2016). Further, we also establish and confirm a new sharp Michael-Simon inequality for the kth mean curvatures in H n + 1 ${\mathbb{H}}^{n+1}$ by virtue of the Brendle-Guan-Li’s flow (“An inverse curvature type hypersurface flow in H n + 1 ${\mathbb{H}}^{n+1}$ ,” (Preprint)) as below (0.2) M λ f 2 E k 2 + | M f | 2 E k 1 2 M ̄ f λ , ν E k 1 + M f E k 1 p k q 1 1 ( W 1 ( Ω ) ) 1 n k + 1 M f n k + 1 n k E k 1 n k n k + 1 \begin{align}\hfill & \underset{M}{\int }{\lambda }^{\prime }\sqrt{{f}^{2}{E}_{k}^{2}+\vert {\nabla }^{M}f{\vert }^{2}{E}_{k-1}^{2}}-\underset{M}{\int }\langle \bar{\nabla }\left(f{\lambda }^{\prime }\right),\nu \rangle \cdot {E}_{k-1}+\underset{\partial M}{\int }f\cdot {E}_{k-1}\hfill \\ \hfill & \quad \ge {\left({p}_{k}{\circ}{q}_{1}^{-1}\left({W}_{1}\left({\Omega}\right)\right)\right)}^{\frac{1}{n-k+1}}{\left(\underset{M}{\int }{f}^{\frac{n-k+1}{n-k}}\cdot {E}_{k-1}\right)}^{\frac{n-k}{n-k+1}}\hfill \end{align} provided that M is h-convex and Ω is the domain enclosed by M, p k (r) = ω n (λ′) k−1, W 1 ( Ω ) = 1 n | M | ${W}_{1}\left({\Omega}\right)=\frac{1}{n}\vert M\vert $ , λ′(r) = coshr, q 1 ( r ) = W 1 S r n + 1 ${q}_{1}\left(r\right)={W}_{1}\left({S}_{r}^{n+1}\right)$ , the area for a geodesic sphere of radius r, and q 1 1 ${q}_{1}^{-1}$ is the inverse function of q 1. In particular, when f is of constant and k is odd, (0.2) is exactly the weighted Alexandrov–Fenchel inequalities proven by Hu, Li, and Wei in (“Locally constrained curvature flows and geometric inequalities in hyperbolic space,” Math. Ann., vol. 382, nos. 3–4, pp. 1425–1474, 2022).
双曲空间 H n + 1 ${mathbb{H}}^{n+1}$ 中通过布伦德尔-关-李流的迈克尔-西蒙式不等式
在本文中,我们首先基于 Brendle、Guan 和 Li 引入的局部约束反曲率流("An inverse curvature type hypersurface flow in H n + 1 ${{mathbb{H}}^{n+1}$ ," (Preprint) ),建立并验证了双曲空间 H n + 1 ${{mathbb{H}}^{n+1}$ 中平均曲率的新的尖锐双曲版 Michael-Simon 不等式,如下 (0.1) ∫ M λ ′ f 2 E 1 2 + | ∇ M f | 2 - ∫ M∇ ̄ f λ ′ 、ν + ∫ ∂ M f ≥ ω n 1 n ∫ M f n n - 1 n - 1 n $ $\underset{M}{int }{\lambda }^{prime }sqrt{{f}^{2}{E}_{1}^{2}+\vert {\nabla }^{M}f{\vert }^{2}}-\ungeerset{M}{int }\langle {bar\nabla }\left(f{\lambda }^{prime }\right)、\nu \rangle +\underset\{partial M}{int }f\ge {\omega }_{n}^{frac{1}{n}}{left(\underset{M}{int }{f}^{frac{n}{n-1}}\right)}^{frac{n-1}{n}}$$ 前提是 M 是 h-convex 且 f 是正的平滑函数、其中 λ′(r) = coshr。特别是,当 f 为常数时,(0.1) 与 Brendle、Hung 和 Wang 在("A Minkowski inequality for hypersurfaces in the anti-de Sitter-Schwarzschild manifold," Commun.纯应用数学》,第 69 卷,第 1 期,第 124-144 页,2016 年)。此外,我们还通过布伦德尔-关-李流("An inverse curvature type hypersurface flow in H n + 1 ${\mathbb{H}}^{n+1}$ ," (Preprint))建立并证实了H n + 1 ${\mathbb{H}}^{n+1}$ 中第k次均值曲率的新的尖锐迈克尔-西蒙不等式(0.2) ∫ M λ ′ f 2 E k 2 + |∇ M f | 2 E k - 1 2 - ∫ M∇ ̄ f λ ′ , ν ⋅ E k - 1 + ∫∂ M f ⋅ E k - 1 ≥ p k ◦ q 1 - 1 ( W 1 ( Ω ) ) 1 n - k + 1 ∫ M f n - k + 1 n - k ⋅ E k - 1 n - k n - k + 1 \begin{align}\hfill &;\underset{M}{int }{lambda }^{\prime } (sqrt{{f}^{2}{E}_{k}^{2}+vert {nabla }^{M}f{vert }^{2}{E}_{k-1}^{2}}-underset{M}{int }\langle バッグ {nabla } (left(f{lambda }^{\prime }\right)、\nu \rangle \cdot {E}_{k-1}+\underset{partial M}{int }f\cdot {E}_{k-1}\hfill \hfill &;\quad \ge {\left({p}_{k}{\circ}{q}_{1}^{-1}\left({W}_{1}\left({\Omega}\right)\right)\right)}^{\frac{1}{n-k+1}}{\left(\underset{M}{\int }{f}^{\frac{n-k+1}{n-k}}{cdot{E}_{k-1}/right)}^{frac{n-k}{n-k+1}}hfill (end{align}),前提是 M 是 h-vex 的,并且 Ω 是 M 所包围的域、p k (r) = ω n (λ′) k-1、 W 1 ( ω ) = 1 n | M | ${W}_{1}\left({\Omega}\right)=\frac{1}{n}vert M\vert $ , λ′(r) = coshr, q 1 ( r ) = W 1 S r n + 1 ${q}_{1}left(r\right)={W}_{1}\left({S}_{r}^{n+1}\right)$ 、是半径为 r 的大地球体的面积,而 q 1 - 1 ${q}_{1}^{-1}$ 是 q 1 的反函数。特别是,当 f 为常数且 k 为奇数时,(0.2) 正是胡、李和魏在《双曲空间中的局部约束曲率流和几何不等式》("Locally constrained curvature flows and geometric inequalities in hyperbolic space")一文中证明的加权亚历山德罗夫-芬切尔不等式。3-4, pp.)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信