Existence of ground states to quasi-linear Schrödinger equations with critical exponential growth involving different potentials

IF 2.1 2区 数学 Q1 MATHEMATICS
Caifeng Zhang, Maochun Zhu
{"title":"Existence of ground states to quasi-linear Schrödinger equations with critical exponential growth involving different potentials","authors":"Caifeng Zhang, Maochun Zhu","doi":"10.1515/ans-2023-0136","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is three-fold. First, we establish singular Trudinger–Moser inequalities with less restrictive constraint:<jats:disp-formula> <jats:label>(0.1)</jats:label> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\" overflow=\"scroll\"> <m:munder> <m:mrow> <m:mi>sup</m:mi> </m:mrow> <m:mrow> <m:mi>u</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi>H</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:munder> <m:mrow> <m:mo>∫</m:mo> </m:mrow> <m:mrow> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> </m:munder> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>∇</m:mi> <m:mi>u</m:mi> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mo>+</m:mo> <m:mi>V</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>x</m:mi> <m:mo>≤</m:mo> <m:mn>1</m:mn> </m:mrow> </m:munder> <m:munder> <m:mrow> <m:mo>∫</m:mo> </m:mrow> <m:mrow> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> </m:munder> <m:mfrac> <m:mrow> <m:msup> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:mn>4</m:mn> <m:mi>π</m:mi> <m:mfenced close=\")\" open=\"(\"> <m:mrow> <m:mn>1</m:mn> <m:mo>−</m:mo> <m:mfrac> <m:mrow> <m:mi>β</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:mfrac> </m:mrow> </m:mfenced> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> </m:msup> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>x</m:mi> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mrow> <m:mi>β</m:mi> </m:mrow> </m:msup> </m:mrow> </m:mfrac> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>x</m:mi> <m:mo>&lt;</m:mo> <m:mo>+</m:mo> <m:mi>∞</m:mi> <m:mo>,</m:mo> </m:math> <jats:tex-math> $$\\underset{u\\in {H}^{1}({\\mathbb{R}}^{2}),\\underset{{\\mathbb{R}}^{2}}{\\int }(\\vert \\nabla u{\\vert }^{2}+V(x){u}^{2})\\mathrm{d}x\\le 1}{\\mathrm{sup}}\\underset{{\\mathbb{R}}^{2}}{\\int }\\frac{{e}^{4\\pi \\left(1-\\tfrac{\\beta }{2}\\right){u}^{2}}-1}{\\vert x{\\vert }^{\\beta }}\\mathrm{d}x&lt; +\\infty ,$$ </jats:tex-math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0136_eq_001.png\"/> </jats:alternatives> </jats:disp-formula>where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mn>0</m:mn> <m:mo>&lt;</m:mo> <m:mi>β</m:mi> <m:mo>&lt;</m:mo> <m:mn>2</m:mn> </m:math> <jats:tex-math> $0&lt; \\beta &lt; 2$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0136_ineq_001.png\"/> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mi>V</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>≥</m:mo> <m:mn>0</m:mn> </m:math> <jats:tex-math> $V(x)\\ge 0$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0136_ineq_002.png\"/> </jats:alternatives> </jats:inline-formula> and may vanish on an open set in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math> ${\\mathbb{R}}^{2}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0136_ineq_003.png\"/> </jats:alternatives> </jats:inline-formula>. Second, we consider the existence of ground states to the following Schrödinger equations with critical exponential growth in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math> ${\\mathbb{R}}^{2}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0136_ineq_004.png\"/> </jats:alternatives> </jats:inline-formula>:<jats:disp-formula> <jats:label>(0.2)</jats:label> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\" overflow=\"scroll\"> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mi>u</m:mi> <m:mo>+</m:mo> <m:mi>γ</m:mi> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mfrac> <m:mrow> <m:mi>f</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>x</m:mi> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mrow> <m:mi>β</m:mi> </m:mrow> </m:msup> </m:mrow> </m:mfrac> <m:mo>,</m:mo> </m:math> <jats:tex-math> $${-}{\\Delta }u+\\gamma u=\\frac{f(u)}{\\vert x{\\vert }^{\\beta }},$$ </jats:tex-math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0136_eq_002.png\"/> </jats:alternatives> </jats:disp-formula>where the nonlinearity <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mi>f</m:mi> </m:math> <jats:tex-math> $f$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0136_ineq_005.png\"/> </jats:alternatives> </jats:inline-formula> has the critical exponential growth. In order to overcome the lack of compactness, we develop a method which is based on the threshold of the least energy, an embedding theorem introduced in (C. Zhang and L. Chen, “Concentration-compactness principle of singular Trudinger-Moser inequalities in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math> ${\\mathbb{R}}^{n}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0136_ineq_006.png\"/> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mi>n</m:mi> </m:math> <jats:tex-math> $n$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0136_ineq_007.png\"/> </jats:alternatives> </jats:inline-formula>-Laplace equations,” <jats:italic>Adv. Nonlinear Stud.</jats:italic>, vol. 18, no. 3, pp. 567–585, 2018) and the Nehari manifold to get the existence of ground states. Furthermore, as an application of inequality (0.1), we also prove the existence of ground states to the following equations involving degenerate potentials in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math> ${\\mathbb{R}}^{2}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0136_ineq_008.png\"/> </jats:alternatives> </jats:inline-formula>:<jats:disp-formula> <jats:label>(0.3)</jats:label> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\" overflow=\"scroll\"> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mi>u</m:mi> <m:mo>+</m:mo> <m:mi>V</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mfrac> <m:mrow> <m:mi>f</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mi>x</m:mi> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mrow> <m:mi>β</m:mi> </m:mrow> </m:msup> </m:mrow> </m:mfrac> <m:mo>.</m:mo> </m:math> <jats:tex-math> $${-}{\\Delta }u+V(x)u=\\frac{f(u)}{\\vert x{\\vert }^{\\beta }}.$$ </jats:tex-math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0136_eq_003.png\"/> </jats:alternatives> </jats:disp-formula>","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"16 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2023-0136","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this paper is three-fold. First, we establish singular Trudinger–Moser inequalities with less restrictive constraint: (0.1) sup u H 1 ( R 2 ) , R 2 ( | u | 2 + V ( x ) u 2 ) d x 1 R 2 e 4 π 1 β 2 u 2 1 | x | β d x < + , $$\underset{u\in {H}^{1}({\mathbb{R}}^{2}),\underset{{\mathbb{R}}^{2}}{\int }(\vert \nabla u{\vert }^{2}+V(x){u}^{2})\mathrm{d}x\le 1}{\mathrm{sup}}\underset{{\mathbb{R}}^{2}}{\int }\frac{{e}^{4\pi \left(1-\tfrac{\beta }{2}\right){u}^{2}}-1}{\vert x{\vert }^{\beta }}\mathrm{d}x< +\infty ,$$ where 0 < β < 2 $0< \beta < 2$ , V ( x ) 0 $V(x)\ge 0$ and may vanish on an open set in R 2 ${\mathbb{R}}^{2}$ . Second, we consider the existence of ground states to the following Schrödinger equations with critical exponential growth in R 2 ${\mathbb{R}}^{2}$ : (0.2) Δ u + γ u = f ( u ) | x | β , $${-}{\Delta }u+\gamma u=\frac{f(u)}{\vert x{\vert }^{\beta }},$$ where the nonlinearity f $f$ has the critical exponential growth. In order to overcome the lack of compactness, we develop a method which is based on the threshold of the least energy, an embedding theorem introduced in (C. Zhang and L. Chen, “Concentration-compactness principle of singular Trudinger-Moser inequalities in R n ${\mathbb{R}}^{n}$ and n $n$ -Laplace equations,” Adv. Nonlinear Stud., vol. 18, no. 3, pp. 567–585, 2018) and the Nehari manifold to get the existence of ground states. Furthermore, as an application of inequality (0.1), we also prove the existence of ground states to the following equations involving degenerate potentials in R 2 ${\mathbb{R}}^{2}$ : (0.3) Δ u + V ( x ) u = f ( u ) | x | β . $${-}{\Delta }u+V(x)u=\frac{f(u)}{\vert x{\vert }^{\beta }}.$$
具有临界指数增长的准线性薛定谔方程的基态存在,涉及不同的电势
本文的目的有三个方面。首先,我们建立了限制较少的奇异特鲁丁格-莫泽不等式: (0.1) sup u ∈ H 1 ( R 2 ) , ∫ R 2 ( |∇ u | 2 + V ( x ) u 2 ) d x ≤ 1 ∫ R 2 e 4 π 1 - β 2 u 2 - 1 | x | β d x <;+ ∞ , $$\underset{u\in {H}^{1}({\mathbb{R}}^{2})、\underset{{mathbb{R}}^{2}}{int }(\vert \nabla u{vert }^{2}+V(x){u}^{2})\mathrm{d}x\le 1}\{mathrm{sup}}\underset{{\mathbb{R}}^{2}}{int }\frac{e}^{4\pi \left(1-).\tfrac{beta }{2}\right){u}^{2}}-1}{vert x{vert }^{\beta }}\mathrm{d}x<;+\infty ,$$ 其中 0 < β < 2 $0< \beta < 2$ , V ( x ) ≥ 0 $V(x)\ge 0$ 并且可能在 R 2 ${\mathbb{R}}^{2}$ 中的开集上消失。其次,我们考虑在 R 2 ${\mathbb{R}}^{2}$ 中存在以下具有临界指数增长的薛定谔方程的基态: (0.2) - Δ u + γ u = f ( u ) | x | β , $${-}{\Delta }u+\gamma u=\frac{f(u)}{\vert x{\vert }^{\beta }},$$其中非线性 f $f$ 具有临界指数增长。为了克服紧凑性的不足,我们开发了一种基于最小能量阈值的方法,该方法是嵌入定理(C. Zhang and L. Chen, "Concentration-compactness principle of singular Trudinger-Moser inequalities in R n ${\mathbb{R}}^{n}$ and n $n$ -Laplace equations," Adv. Nonlinear Stud.3, pp. 567-585, 2018)和 Nehari 流形,从而得到基态的存在。此外,作为不等式(0.1)的应用,我们还证明了涉及 R 2 ${\mathbb{R}}^{2}$ 中退化势的下列方程的基态存在性: (0.3) - Δ u + V ( x ) u = f ( u ) | x | β . $${-}{\Delta }u+V(x)u=\frac{f(u)}{\vert x\vert }^{\beta }}.$$$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信