{"title":"Sharp affine weighted L 2 Sobolev inequalities on the upper half space","authors":"Jingbo Dou, Yunyun Hu, Caihui Yue","doi":"10.1515/ans-2023-0117","DOIUrl":"https://doi.org/10.1515/ans-2023-0117","url":null,"abstract":"We establish some sharp affine weighted <jats:italic>L</jats:italic> <jats:sup>2</jats:sup> Sobolev inequalities on the upper half space, which involves a divergent operator with degeneracy on the boundary. Moreover, for some certain exponents cases, we also characterize the extremal functions and best constants. Our approach only relies on the <jats:italic>L</jats:italic> <jats:sup>2</jats:sup> structure of gradient norm, affine invariance and a class of weighted <jats:italic>L</jats:italic> <jats:sup>2</jats:sup> Sobolev inequality on the upper half space. This is a simple approach which does not depend on the geometric structure of Euclidean space such as Brunn–Minkowski theory on convex geometry.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"8 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140153182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An upper bound for the least energy of a sign-changing solution to a zero mass problem","authors":"Mónica Clapp, Liliane Maia, Benedetta Pellacci","doi":"10.1515/ans-2022-0065","DOIUrl":"https://doi.org/10.1515/ans-2022-0065","url":null,"abstract":"We give an upper bound for the least possible energy of a sign-changing solution to the nonlinear scalar field equation <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mi>u</m:mi> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mspace width=\"0.17em\" /> <m:mi>u</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mi>D</m:mi> <m:mn>1,2</m:mn> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:msup> <m:mi mathvariant=\"normal\">R</m:mi> <m:mi>N</m:mi> </m:msup> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> </m:math> <jats:tex-math> $-{Delta}u=fleft(uright), uin {D}^{1,2}left({mathrm{R}}^{N}right),$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2022-0065_ineq_001.png\" /> </jats:alternatives> </jats:inline-formula> where <jats:italic>N</jats:italic> ≥ 5 and the nonlinearity <jats:italic>f</jats:italic> is subcritical at infinity and supercritical near the origin. More precisely, we establish the existence of a nonradial sign-changing solution whose energy is smaller that 12<jats:italic>c</jats:italic> <jats:sub>0</jats:sub> if <jats:italic>N</jats:italic> = 5, 6 and smaller than 10<jats:italic>c</jats:italic> <jats:sub>0</jats:sub> if <jats:italic>N</jats:italic> ≥ 7, where <jats:italic>c</jats:italic> <jats:sub>0</jats:sub> is the ground state energy.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"143 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140153187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A C 2,α,β estimate for complex Monge–Ampère type equations with conic sigularities","authors":"Liding Huang, Gang Tian, Jiaxiang Wang","doi":"10.1515/ans-2023-0113","DOIUrl":"https://doi.org/10.1515/ans-2023-0113","url":null,"abstract":"In this paper, we give an alternative approach to the <jats:italic>C</jats:italic> <jats:sup>2,<jats:italic>α</jats:italic>,<jats:italic>β</jats:italic> </jats:sup> estimate for complex Monge-Ampère equations with cone singularities along simple normal crossing divisors.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"72 6 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140129560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Geometry of branched minimal surfaces of finite index","authors":"William H. Meeks, Joaquín Pérez","doi":"10.1515/ans-2023-0118","DOIUrl":"https://doi.org/10.1515/ans-2023-0118","url":null,"abstract":"Given <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mi>I</m:mi> <m:mo>,</m:mo> <m:mi>B</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\"double-struck\">N</m:mi> <m:mo>∪</m:mo> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> </m:math> <jats:tex-math> $I,Bin mathbb{N}cup left{0right}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0118_ineq_001.png\" /> </jats:alternatives> </jats:inline-formula>, we investigate the existence and geometry of complete finitely branched minimal surfaces <jats:italic>M</jats:italic> in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mn>3</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math> ${mathbb{R}}^{3}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0118_ineq_002.png\" /> </jats:alternatives> </jats:inline-formula> with Morse index at most <jats:italic>I</jats:italic> and total branching order at most <jats:italic>B</jats:italic>. Previous works of Fischer-Colbrie (“On complete minimal surfaces with finite Morse index in 3-manifolds,” <jats:italic>Invent. Math.</jats:italic>, vol. 82, pp. 121–132, 1985) and Ros (“One-sided complete stable minimal surfaces,” <jats:italic>J. Differ. Geom.</jats:italic>, vol. 74, pp. 69–92, 2006) explain that such surfaces are precisely the complete minimal surfaces in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mn>3</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math> ${mathbb{R}}^{3}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0118_ineq_003.png\" /> </jats:alternatives> </jats:inline-formula> of finite total curvature and finite total branching order. Among other things, we derive scale-invariant weak chord-arc type results for such an <jats:italic>M</jats:italic> with estimates that are given in terms of <jats:italic>I</jats:italic> and <jats:italic>B</jats:italic>. In order to obtain some of our main results for these special surfaces, we obtain general intrinsic monotonicity of area formulas for <jats:italic>m</jats:italic>-dimensional submanifolds Σ of an <jats:italic>n</jats:italic>-dimensional Riemannian manifold <jats:italic>X</jats:italic>, where these area estimates depend on the geometry of <jats:italic>X</jats:italic> and upper bounds on the lengths of the mean curvature vectors of Σ. We also describe a family of complete, finitely branched minimal surfaces in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" ","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"58 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140114990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Segregated solutions for nonlinear Schrödinger systems with a large number of components","authors":"Haixia Chen, Angela Pistoia","doi":"10.1515/ans-2022-0076","DOIUrl":"https://doi.org/10.1515/ans-2022-0076","url":null,"abstract":"In this paper we are concerned with the existence of segregated non-radial solutions for nonlinear Schrödinger systems with a large number of components in a weak fully attractive or repulsive regime in presence of a suitable external radial potential.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"22 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140117566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}