Advanced Nonlinear Studies最新文献

筛选
英文 中文
On constant higher order mean curvature hypersurfaces in H n × R ${mathbb{H}}^{n}{times}mathbb{R}$ 论 H n × R ${mathbb{H}}^{n}{times}mathbb{R}$ 中的恒定高阶均值曲率超曲面
IF 1.8 2区 数学
Advanced Nonlinear Studies Pub Date : 2024-03-15 DOI: 10.1515/ans-2023-0115
Barbara Nelli, Giuseppe Pipoli, Giovanni Russo
{"title":"On constant higher order mean curvature hypersurfaces in H n × R ${mathbb{H}}^{n}{times}mathbb{R}$","authors":"Barbara Nelli, Giuseppe Pipoli, Giovanni Russo","doi":"10.1515/ans-2023-0115","DOIUrl":"https://doi.org/10.1515/ans-2023-0115","url":null,"abstract":"We classify hypersurfaces with rotational symmetry and positive constant <jats:italic>r</jats:italic>-th mean curvature in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">H</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> <m:mo>×</m:mo> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:math> <jats:tex-math> ${mathbb{H}}^{n}{times}mathbb{R}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0115_ineq_002.png\" /> </jats:alternatives> </jats:inline-formula>. Specific constant higher order mean curvature hypersurfaces invariant under hyperbolic translation are also treated. Some of these invariant hypersurfaces are employed as barriers to prove a Ros–Rosenberg type theorem in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">H</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> <m:mo>×</m:mo> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:math> <jats:tex-math> ${mathbb{H}}^{n}{times}mathbb{R}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0115_ineq_003.png\" /> </jats:alternatives> </jats:inline-formula>: we show that compact connected hypersurfaces of constant <jats:italic>r</jats:italic>-th mean curvature embedded in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">H</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> <m:mo>×</m:mo> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>∞</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:tex-math> ${mathbb{H}}^{n}{times}left[0,infty right)$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0115_ineq_004.png\" /> </jats:alternatives> </jats:inline-formula> with boundary in the slice <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">H</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> <m:mo>×</m:mo> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> </m:math> <jats:tex-math> ${mathbb{H}}^{n}{times}left{0right}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0115_ineq_005.png\" /> </jats:alternatives> </jats:inline-formula> are topological disks under suitable assumptions.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"51 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140153185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The existence and multiplicity of L 2-normalized solutions to nonlinear Schrödinger equations with variable coefficients 具有可变系数的非线性薛定谔方程的 L 2 归一化解的存在性和多重性
IF 1.8 2区 数学
Advanced Nonlinear Studies Pub Date : 2024-03-14 DOI: 10.1515/ans-2022-0056
Norihisa Ikoma, Mizuki Yamanobe
{"title":"The existence and multiplicity of L 2-normalized solutions to nonlinear Schrödinger equations with variable coefficients","authors":"Norihisa Ikoma, Mizuki Yamanobe","doi":"10.1515/ans-2022-0056","DOIUrl":"https://doi.org/10.1515/ans-2022-0056","url":null,"abstract":"The existence of <jats:italic>L</jats:italic> <jats:sup>2</jats:sup>–normalized solutions is studied for the equation <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mi>u</m:mi> <m:mo>+</m:mo> <m:mi>μ</m:mi> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mi>f</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mtext> </m:mtext> <m:mtext> </m:mtext> <m:mtext>in</m:mtext> <m:mspace width=\"0.3333em\" /> <m:msup> <m:mrow> <m:mi mathvariant=\"bold\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> <m:mo>,</m:mo> <m:mspace width=\"1em\" /> <m:msub> <m:mrow> <m:mo>∫</m:mo> </m:mrow> <m:mrow> <m:msup> <m:mrow> <m:mi mathvariant=\"bold\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:mrow> </m:msub> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mspace width=\"0.17em\" /> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>x</m:mi> <m:mo>=</m:mo> <m:mi>m</m:mi> <m:mo>.</m:mo> </m:math> <jats:tex-math> $-{Delta}u+mu u=fleft(x,uright)quad quad text{in} {mathbf{R}}^{N},quad {int }_{{mathbf{R}}^{N}}{u}^{2} mathrm{d}x=m.$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2022-0056_ineq_001.png\" /> </jats:alternatives> </jats:inline-formula> Here <jats:italic>m</jats:italic> &gt; 0 and <jats:italic>f</jats:italic>(<jats:italic>x</jats:italic>, <jats:italic>s</jats:italic>) are given, <jats:italic>f</jats:italic>(<jats:italic>x</jats:italic>, <jats:italic>s</jats:italic>) has the <jats:italic>L</jats:italic> <jats:sup>2</jats:sup>-subcritical growth and (<jats:italic>μ</jats:italic>, <jats:italic>u</jats:italic>) ∈ R × <jats:italic>H</jats:italic> <jats:sup>1</jats:sup>(R <jats:sup> <jats:italic>N</jats:italic> </jats:sup>) are unknown. In this paper, we employ the argument in Hirata and Tanaka (“Nonlinear scalar field equations with <jats:italic>L</jats:italic> <jats:sup>2</jats:sup> constraint: mountain pass and symmetric mountain pass approaches,” <jats:italic>Adv. Nonlinear Stud.</jats:italic>, vol. 19, no. 2, pp. 263–290, 2019) and find critical points of the Lagrangian function. To obtain critical points of the Lagrangian function, we use the Palais–Smale–Cerami condition instead of Condition (PSP) in Hirata and Tanaka (“Nonlinear scalar field equations with <jats:italic>L</jats:italic> <jats:sup>2</jats:sup> constraint: mountain pass and symmetric mountain pass approaches,” <jats:italic>Adv. Nonlinear Stud.</jats:italic>, vol. 19, no. 2, pp. 263–290, 2019). We also prove the multiplicity result under the radial symmetry.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"305 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140153186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Infinitely many free or prescribed mass solutions for fractional Hartree equations and Pohozaev identities 分数哈特里方程和波霍扎耶夫等式的无限多自由或规定质量解
IF 1.8 2区 数学
Advanced Nonlinear Studies Pub Date : 2024-03-14 DOI: 10.1515/ans-2023-0110
Silvia Cingolani, Marco Gallo, Kazunaga Tanaka
{"title":"Infinitely many free or prescribed mass solutions for fractional Hartree equations and Pohozaev identities","authors":"Silvia Cingolani, Marco Gallo, Kazunaga Tanaka","doi":"10.1515/ans-2023-0110","DOIUrl":"https://doi.org/10.1515/ans-2023-0110","url":null,"abstract":"In this paper we study the following nonlinear fractional Hartree (or Choquard-Pekar) equation &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo&gt;−&lt;/m:mo&gt; &lt;m:mi mathvariant=\"normal\"&gt;Δ&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;s&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;m:mo&gt;+&lt;/m:mo&gt; &lt;m:mi&gt;μ&lt;/m:mi&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;m:mo&gt;=&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:msub&gt; &lt;m:mrow&gt; &lt;m:mi&gt;I&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;α&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msub&gt; &lt;m:mo&gt;*&lt;/m:mo&gt; &lt;m:mi&gt;F&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi&gt;F&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mo&gt;′&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mtext&gt; &lt;/m:mtext&gt; &lt;m:mtext&gt;in&lt;/m:mtext&gt; &lt;m:mspace width=\"0.3333em\" /&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"double-struck\"&gt;R&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;N&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;/m:math&gt; &lt;jats:tex-math&gt; ${left(-{Delta}right)}^{s}u+mu u=left({I}_{alpha }{ast}Fleft(uright)right){F}^{prime }left(uright)quad text{in} {mathbb{R}}^{N},$ &lt;/jats:tex-math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0110_ineq_001.png\" /&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; (*) where &lt;jats:italic&gt;μ&lt;/jats:italic&gt; &gt; 0, &lt;jats:italic&gt;s&lt;/jats:italic&gt; ∈ (0, 1), &lt;jats:italic&gt;N&lt;/jats:italic&gt; ≥ 2, &lt;jats:italic&gt;α&lt;/jats:italic&gt; ∈ (0, &lt;jats:italic&gt;N&lt;/jats:italic&gt;), &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"&gt; &lt;m:msub&gt; &lt;m:mrow&gt; &lt;m:mi&gt;I&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;α&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msub&gt; &lt;m:mo&gt;∼&lt;/m:mo&gt; &lt;m:mfrac&gt; &lt;m:mrow&gt; &lt;m:mn&gt;1&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;|&lt;/m:mo&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;|&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;N&lt;/m:mi&gt; &lt;m:mo&gt;−&lt;/m:mo&gt; &lt;m:mi&gt;α&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;/m:mrow&gt; &lt;/m:mfrac&gt; &lt;/m:math&gt; &lt;jats:tex-math&gt; ${I}_{alpha }sim frac{1}{vert x{vert }^{N-alpha }}$ &lt;/jats:tex-math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0110_ineq_002.png\" /&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; is the Riesz potential, and &lt;jats:italic&gt;F&lt;/jats:italic&gt; is a general subcritical nonlinearity. The goal is to prove existence of multiple (radially symmetric) solutions &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;m:mo&gt;∈&lt;/m:mo&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi&gt;H&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;s&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"double-struck","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"80 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140153583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sharp affine weighted L 2 Sobolev inequalities on the upper half space 上半空间上的尖锐仿射加权 L 2 索波列夫不等式
IF 1.8 2区 数学
Advanced Nonlinear Studies Pub Date : 2024-03-14 DOI: 10.1515/ans-2023-0117
Jingbo Dou, Yunyun Hu, Caihui Yue
{"title":"Sharp affine weighted L 2 Sobolev inequalities on the upper half space","authors":"Jingbo Dou, Yunyun Hu, Caihui Yue","doi":"10.1515/ans-2023-0117","DOIUrl":"https://doi.org/10.1515/ans-2023-0117","url":null,"abstract":"We establish some sharp affine weighted <jats:italic>L</jats:italic> <jats:sup>2</jats:sup> Sobolev inequalities on the upper half space, which involves a divergent operator with degeneracy on the boundary. Moreover, for some certain exponents cases, we also characterize the extremal functions and best constants. Our approach only relies on the <jats:italic>L</jats:italic> <jats:sup>2</jats:sup> structure of gradient norm, affine invariance and a class of weighted <jats:italic>L</jats:italic> <jats:sup>2</jats:sup> Sobolev inequality on the upper half space. This is a simple approach which does not depend on the geometric structure of Euclidean space such as Brunn–Minkowski theory on convex geometry.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"8 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140153182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An upper bound for the least energy of a sign-changing solution to a zero mass problem 零质量问题符号变化解的最小能量上限
IF 1.8 2区 数学
Advanced Nonlinear Studies Pub Date : 2024-03-14 DOI: 10.1515/ans-2022-0065
Mónica Clapp, Liliane Maia, Benedetta Pellacci
{"title":"An upper bound for the least energy of a sign-changing solution to a zero mass problem","authors":"Mónica Clapp, Liliane Maia, Benedetta Pellacci","doi":"10.1515/ans-2022-0065","DOIUrl":"https://doi.org/10.1515/ans-2022-0065","url":null,"abstract":"We give an upper bound for the least possible energy of a sign-changing solution to the nonlinear scalar field equation <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mi>u</m:mi> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mspace width=\"0.17em\" /> <m:mi>u</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mi>D</m:mi> <m:mn>1,2</m:mn> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:msup> <m:mi mathvariant=\"normal\">R</m:mi> <m:mi>N</m:mi> </m:msup> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> </m:math> <jats:tex-math> $-{Delta}u=fleft(uright), uin {D}^{1,2}left({mathrm{R}}^{N}right),$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2022-0065_ineq_001.png\" /> </jats:alternatives> </jats:inline-formula> where <jats:italic>N</jats:italic> ≥ 5 and the nonlinearity <jats:italic>f</jats:italic> is subcritical at infinity and supercritical near the origin. More precisely, we establish the existence of a nonradial sign-changing solution whose energy is smaller that 12<jats:italic>c</jats:italic> <jats:sub>0</jats:sub> if <jats:italic>N</jats:italic> = 5, 6 and smaller than 10<jats:italic>c</jats:italic> <jats:sub>0</jats:sub> if <jats:italic>N</jats:italic> ≥ 7, where <jats:italic>c</jats:italic> <jats:sub>0</jats:sub> is the ground state energy.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"143 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140153187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A C 2,α,β estimate for complex Monge–Ampère type equations with conic sigularities 具有圆锥西格的复杂蒙日-安培方程的 C 2,α,β 估计值
IF 1.8 2区 数学
Advanced Nonlinear Studies Pub Date : 2024-03-13 DOI: 10.1515/ans-2023-0113
Liding Huang, Gang Tian, Jiaxiang Wang
{"title":"A C 2,α,β estimate for complex Monge–Ampère type equations with conic sigularities","authors":"Liding Huang, Gang Tian, Jiaxiang Wang","doi":"10.1515/ans-2023-0113","DOIUrl":"https://doi.org/10.1515/ans-2023-0113","url":null,"abstract":"In this paper, we give an alternative approach to the <jats:italic>C</jats:italic> <jats:sup>2,<jats:italic>α</jats:italic>,<jats:italic>β</jats:italic> </jats:sup> estimate for complex Monge-Ampère equations with cone singularities along simple normal crossing divisors.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"72 6 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140129560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geometry of branched minimal surfaces of finite index 有限指数分支极小曲面的几何学
IF 1.8 2区 数学
Advanced Nonlinear Studies Pub Date : 2024-03-12 DOI: 10.1515/ans-2023-0118
William H. Meeks, Joaquín Pérez
{"title":"Geometry of branched minimal surfaces of finite index","authors":"William H. Meeks, Joaquín Pérez","doi":"10.1515/ans-2023-0118","DOIUrl":"https://doi.org/10.1515/ans-2023-0118","url":null,"abstract":"Given &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"&gt; &lt;m:mi&gt;I&lt;/m:mi&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mi&gt;B&lt;/m:mi&gt; &lt;m:mo&gt;∈&lt;/m:mo&gt; &lt;m:mi mathvariant=\"double-struck\"&gt;N&lt;/m:mi&gt; &lt;m:mo&gt;∪&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;{&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mn&gt;0&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;}&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:tex-math&gt; $I,Bin mathbb{N}cup left{0right}$ &lt;/jats:tex-math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0118_ineq_001.png\" /&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;, we investigate the existence and geometry of complete finitely branched minimal surfaces &lt;jats:italic&gt;M&lt;/jats:italic&gt; in &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"double-struck\"&gt;R&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mn&gt;3&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;/m:math&gt; &lt;jats:tex-math&gt; ${mathbb{R}}^{3}$ &lt;/jats:tex-math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0118_ineq_002.png\" /&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; with Morse index at most &lt;jats:italic&gt;I&lt;/jats:italic&gt; and total branching order at most &lt;jats:italic&gt;B&lt;/jats:italic&gt;. Previous works of Fischer-Colbrie (“On complete minimal surfaces with finite Morse index in 3-manifolds,” &lt;jats:italic&gt;Invent. Math.&lt;/jats:italic&gt;, vol. 82, pp. 121–132, 1985) and Ros (“One-sided complete stable minimal surfaces,” &lt;jats:italic&gt;J. Differ. Geom.&lt;/jats:italic&gt;, vol. 74, pp. 69–92, 2006) explain that such surfaces are precisely the complete minimal surfaces in &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"double-struck\"&gt;R&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mn&gt;3&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;/m:math&gt; &lt;jats:tex-math&gt; ${mathbb{R}}^{3}$ &lt;/jats:tex-math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0118_ineq_003.png\" /&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; of finite total curvature and finite total branching order. Among other things, we derive scale-invariant weak chord-arc type results for such an &lt;jats:italic&gt;M&lt;/jats:italic&gt; with estimates that are given in terms of &lt;jats:italic&gt;I&lt;/jats:italic&gt; and &lt;jats:italic&gt;B&lt;/jats:italic&gt;. In order to obtain some of our main results for these special surfaces, we obtain general intrinsic monotonicity of area formulas for &lt;jats:italic&gt;m&lt;/jats:italic&gt;-dimensional submanifolds Σ of an &lt;jats:italic&gt;n&lt;/jats:italic&gt;-dimensional Riemannian manifold &lt;jats:italic&gt;X&lt;/jats:italic&gt;, where these area estimates depend on the geometry of &lt;jats:italic&gt;X&lt;/jats:italic&gt; and upper bounds on the lengths of the mean curvature vectors of Σ. We also describe a family of complete, finitely branched minimal surfaces in &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" ","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"58 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140114990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Segregated solutions for nonlinear Schrödinger systems with a large number of components 具有大量分量的非线性薛定谔系统的分离解
IF 1.8 2区 数学
Advanced Nonlinear Studies Pub Date : 2024-03-12 DOI: 10.1515/ans-2022-0076
Haixia Chen, Angela Pistoia
{"title":"Segregated solutions for nonlinear Schrödinger systems with a large number of components","authors":"Haixia Chen, Angela Pistoia","doi":"10.1515/ans-2022-0076","DOIUrl":"https://doi.org/10.1515/ans-2022-0076","url":null,"abstract":"In this paper we are concerned with the existence of segregated non-radial solutions for nonlinear Schrödinger systems with a large number of components in a weak fully attractive or repulsive regime in presence of a suitable external radial potential.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"22 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140117566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A semilinear Dirichlet problem involving the fractional Laplacian in R+ n 涉及 R+ n 中分数拉普拉斯的半线性迪里夏特问题
IF 1.8 2区 数学
Advanced Nonlinear Studies Pub Date : 2024-03-12 DOI: 10.1515/ans-2023-0102
Yan Li
{"title":"A semilinear Dirichlet problem involving the fractional Laplacian in R+ n","authors":"Yan Li","doi":"10.1515/ans-2023-0102","DOIUrl":"https://doi.org/10.1515/ans-2023-0102","url":null,"abstract":"We investigate the Dirichelt problem involving the fractional Laplacian in the upper half-space &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"&gt; &lt;m:msubsup&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"double-struck\"&gt;R&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mo&gt;+&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;n&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msubsup&gt; &lt;m:mo&gt;=&lt;/m:mo&gt; &lt;m:mfenced close=\"}\" open=\"{\"&gt; &lt;m:mrow&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;m:mo&gt;∈&lt;/m:mo&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"double-struck\"&gt;R&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;n&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:mo stretchy=\"false\"&gt;∣&lt;/m:mo&gt; &lt;m:msub&gt; &lt;m:mrow&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mn&gt;1&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:msub&gt; &lt;m:mo&gt;&gt;&lt;/m:mo&gt; &lt;m:mn&gt;0&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:mfenced&gt; &lt;/m:math&gt; &lt;jats:tex-math&gt; ${mathbb{R}}_{+}^{n}=left{xin {mathbb{R}}^{n}mid {x}_{1}{ &gt;}0right}$ &lt;/jats:tex-math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0102_ineq_002.png\" /&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;: &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"&gt; &lt;m:mfenced close=\"\" open=\"{\"&gt; &lt;m:mrow&gt; &lt;m:mtable&gt; &lt;m:mtr&gt; &lt;m:mtd columnalign=\"left\"&gt; &lt;m:mtext&gt; &lt;/m:mtext&gt; &lt;/m:mtd&gt; &lt;m:mtd columnalign=\"left\"&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo&gt;−&lt;/m:mo&gt; &lt;m:mi mathvariant=\"normal\"&gt;Δ&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;s&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;=&lt;/m:mo&gt; &lt;m:mi&gt;f&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mspace width=\"2em\" /&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;m:mo&gt;∈&lt;/m:mo&gt; &lt;m:msubsup&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"double-struck\"&gt;R&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mo&gt;+&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;n&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msubsup&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;/m:mtd&gt; &lt;/m:mtr&gt; &lt;m:mtr&gt; &lt;m:mtd columnalign=\"left\"&gt; &lt;m:mtext&gt; &lt;/m:mtext&gt; &lt;/m:mtd&gt; &lt;m:mtd columnalign=\"left\"&gt; &lt;m:mspace width=\"2em\" /&gt; &lt;m:mspace width=\"0.3333em\" /&gt; &lt;m:mspace width=\"0.3333em\" /&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;&gt;&lt;/m:mo&gt; &lt;m:mn&gt;0&lt;/m:mn&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mspace width=\"2em\" /&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;m:mo&gt;∈&lt;/m:mo&gt; &lt;m:msubsup&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"double-struck\"&gt;R&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mo&gt;+&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;n&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msubsup&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;/m:mtd&gt; &lt;/m:mtr&gt; &lt;m:mtr&gt; &lt;m:mtd columnalign=\"left\"&gt; &lt;m:mtext&gt; &lt;/m:mtext&gt; &lt;/m:mtd&gt; &lt;m:mtd columnalign=\"left\"&gt; &lt;m:mspace width=\"2em\" /&gt; &lt;m:mspace width=\"0.3333em\" /&gt; &lt;m:mspace width=\"0.3333em\" /&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"26 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140114885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Liouville theorems of solutions to mixed order Hénon-Hardy type system with exponential nonlinearity 指数非线性混合阶 Hénon-Hardy 型系统解的 Liouville 定理
IF 1.8 2区 数学
Advanced Nonlinear Studies Pub Date : 2024-03-12 DOI: 10.1515/ans-2023-0109
Wei Dai, Shaolong Peng
{"title":"Liouville theorems of solutions to mixed order Hénon-Hardy type system with exponential nonlinearity","authors":"Wei Dai, Shaolong Peng","doi":"10.1515/ans-2023-0109","DOIUrl":"https://doi.org/10.1515/ans-2023-0109","url":null,"abstract":"In this paper, we are concerned with the Hénon-Hardy type systems with exponential nonlinearity on a half space &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"&gt; &lt;m:msubsup&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"double-struck\"&gt;R&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mo&gt;+&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mn&gt;2&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:msubsup&gt; &lt;/m:math&gt; &lt;jats:tex-math&gt; ${mathbb{R}}_{+}^{2}$ &lt;/jats:tex-math&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0109_ineq_001.png\" /&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;: &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"&gt; &lt;m:mfenced close=\"\" open=\"{\"&gt; &lt;m:mrow&gt; &lt;m:mtable&gt; &lt;m:mtr&gt; &lt;m:mtd columnalign=\"left\"&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo&gt;−&lt;/m:mo&gt; &lt;m:mi mathvariant=\"normal\"&gt;Δ&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mfrac&gt; &lt;m:mrow&gt; &lt;m:mi&gt;α&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mn&gt;2&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:mfrac&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;=&lt;/m:mo&gt; &lt;m:mo stretchy=\"false\"&gt;|&lt;/m:mo&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;|&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;a&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:msub&gt; &lt;m:mrow&gt; &lt;m:mi&gt;p&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mn&gt;1&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:msub&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi&gt;e&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:msub&gt; &lt;m:mrow&gt; &lt;m:mi&gt;q&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mn&gt;1&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:msub&gt; &lt;m:mi&gt;v&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mspace width=\"0.17em\" /&gt; &lt;m:mspace width=\"0.17em\" /&gt; &lt;m:mspace width=\"0.17em\" /&gt; &lt;m:mspace width=\"0.17em\" /&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;m:mo&gt;∈&lt;/m:mo&gt; &lt;m:msubsup&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"double-struck\"&gt;R&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mo&gt;+&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mn&gt;2&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:msubsup&gt; &lt;m:mo&gt;,&lt;/m:mo&gt; &lt;m:mspace width=\"1em\" /&gt; &lt;/m:mtd&gt; &lt;/m:mtr&gt; &lt;m:mtr&gt; &lt;m:mtd columnalign=\"left\"&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mo&gt;−&lt;/m:mo&gt; &lt;m:mi mathvariant=\"normal\"&gt;Δ&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mi&gt;v&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;=&lt;/m:mo&gt; &lt;m:mo stretchy=\"false\"&gt;|&lt;/m:mo&gt; &lt;m:mi&gt;x&lt;/m:mi&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mo stretchy=\"false\"&gt;|&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;b&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi&gt;u&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:msub&gt; &lt;m:mrow&gt; &lt;m:mi&gt;p&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mn&gt;2&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:msub&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:mrow&gt; &lt;m:mo","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"14 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140117560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信