Geometry of branched minimal surfaces of finite index

IF 2.1 2区 数学 Q1 MATHEMATICS
William H. Meeks, Joaquín Pérez
{"title":"Geometry of branched minimal surfaces of finite index","authors":"William H. Meeks, Joaquín Pérez","doi":"10.1515/ans-2023-0118","DOIUrl":null,"url":null,"abstract":"Given <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mi>I</m:mi> <m:mo>,</m:mo> <m:mi>B</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\"double-struck\">N</m:mi> <m:mo>∪</m:mo> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> </m:math> <jats:tex-math> $I,B\\in \\mathbb{N}\\cup \\left\\{0\\right\\}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0118_ineq_001.png\" /> </jats:alternatives> </jats:inline-formula>, we investigate the existence and geometry of complete finitely branched minimal surfaces <jats:italic>M</jats:italic> in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mn>3</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math> ${\\mathbb{R}}^{3}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0118_ineq_002.png\" /> </jats:alternatives> </jats:inline-formula> with Morse index at most <jats:italic>I</jats:italic> and total branching order at most <jats:italic>B</jats:italic>. Previous works of Fischer-Colbrie (“On complete minimal surfaces with finite Morse index in 3-manifolds,” <jats:italic>Invent. Math.</jats:italic>, vol. 82, pp. 121–132, 1985) and Ros (“One-sided complete stable minimal surfaces,” <jats:italic>J. Differ. Geom.</jats:italic>, vol. 74, pp. 69–92, 2006) explain that such surfaces are precisely the complete minimal surfaces in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mn>3</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math> ${\\mathbb{R}}^{3}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0118_ineq_003.png\" /> </jats:alternatives> </jats:inline-formula> of finite total curvature and finite total branching order. Among other things, we derive scale-invariant weak chord-arc type results for such an <jats:italic>M</jats:italic> with estimates that are given in terms of <jats:italic>I</jats:italic> and <jats:italic>B</jats:italic>. In order to obtain some of our main results for these special surfaces, we obtain general intrinsic monotonicity of area formulas for <jats:italic>m</jats:italic>-dimensional submanifolds Σ of an <jats:italic>n</jats:italic>-dimensional Riemannian manifold <jats:italic>X</jats:italic>, where these area estimates depend on the geometry of <jats:italic>X</jats:italic> and upper bounds on the lengths of the mean curvature vectors of Σ. We also describe a family of complete, finitely branched minimal surfaces in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mn>3</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math> ${\\mathbb{R}}^{3}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0118_ineq_004.png\" /> </jats:alternatives> </jats:inline-formula> that are stable and non-orientable; these examples generalize the classical Henneberg minimal surface.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"58 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2023-0118","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given I , B N { 0 } $I,B\in \mathbb{N}\cup \left\{0\right\}$ , we investigate the existence and geometry of complete finitely branched minimal surfaces M in R 3 ${\mathbb{R}}^{3}$ with Morse index at most I and total branching order at most B. Previous works of Fischer-Colbrie (“On complete minimal surfaces with finite Morse index in 3-manifolds,” Invent. Math., vol. 82, pp. 121–132, 1985) and Ros (“One-sided complete stable minimal surfaces,” J. Differ. Geom., vol. 74, pp. 69–92, 2006) explain that such surfaces are precisely the complete minimal surfaces in R 3 ${\mathbb{R}}^{3}$ of finite total curvature and finite total branching order. Among other things, we derive scale-invariant weak chord-arc type results for such an M with estimates that are given in terms of I and B. In order to obtain some of our main results for these special surfaces, we obtain general intrinsic monotonicity of area formulas for m-dimensional submanifolds Σ of an n-dimensional Riemannian manifold X, where these area estimates depend on the geometry of X and upper bounds on the lengths of the mean curvature vectors of Σ. We also describe a family of complete, finitely branched minimal surfaces in R 3 ${\mathbb{R}}^{3}$ that are stable and non-orientable; these examples generalize the classical Henneberg minimal surface.
有限指数分支极小曲面的几何学
给定 I , B ∈ N∪ { 0 } $I,B\in \mathbb{N}\cup \left\{0\right\}$, 我们研究了 R 3 $\{mathbb{R}}^{3}$ 中具有最多 I 的莫尔斯指数和最多 B 的总分支序的完整有限分支极小曲面 M 的存在性和几何性质。Math., vol. 82, pp.Geom., vol. 74, pp.为了得到这些特殊曲面的一些主要结果,我们得到了 n 维黎曼流形 X 的 m 维子流形 Σ 的一般内在单调性面积公式,其中这些面积估计值取决于 X 的几何形状和 Σ 的平均曲率向量长度的上限。我们还描述了 R 3 ${\mathbb{R}}^{3}$ 中一系列稳定且不可定向的完整有限分支极小曲面;这些例子概括了经典的 Henneberg 极小曲面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信