涉及 R+ n 中分数拉普拉斯的半线性迪里夏特问题

IF 2.1 2区 数学 Q1 MATHEMATICS
Yan Li
{"title":"涉及 R+ n 中分数拉普拉斯的半线性迪里夏特问题","authors":"Yan Li","doi":"10.1515/ans-2023-0102","DOIUrl":null,"url":null,"abstract":"We investigate the Dirichelt problem involving the fractional Laplacian in the upper half-space <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msubsup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mo>+</m:mo> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msubsup> <m:mo>=</m:mo> <m:mfenced close=\"}\" open=\"{\"> <m:mrow> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> <m:mo stretchy=\"false\">∣</m:mo> <m:msub> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> </m:mrow> </m:mfenced> </m:math> <jats:tex-math> ${\\mathbb{R}}_{+}^{n}=\\left\\{x\\in {\\mathbb{R}}^{n}\\mid {x}_{1}{ &gt;}0\\right\\}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0102_ineq_002.png\" /> </jats:alternatives> </jats:inline-formula>: <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mfenced close=\"\" open=\"{\"> <m:mrow> <m:mtable> <m:mtr> <m:mtd columnalign=\"left\"> <m:mtext> </m:mtext> </m:mtd> <m:mtd columnalign=\"left\"> <m:msup> <m:mrow> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> </m:msup> <m:mi>u</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mi>f</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>u</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mspace width=\"2em\" /> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msubsup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mo>+</m:mo> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msubsup> <m:mo>,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:mtext> </m:mtext> </m:mtd> <m:mtd columnalign=\"left\"> <m:mspace width=\"2em\" /> <m:mspace width=\"0.3333em\" /> <m:mspace width=\"0.3333em\" /> <m:mi>u</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mspace width=\"2em\" /> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msubsup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mo>+</m:mo> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msubsup> <m:mo>,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:mtext> </m:mtext> </m:mtd> <m:mtd columnalign=\"left\"> <m:mspace width=\"2em\" /> <m:mspace width=\"0.3333em\" /> <m:mspace width=\"0.3333em\" /> <m:mi>u</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mspace width=\"2em\" /> <m:mi>x</m:mi> <m:mo>∉</m:mo> <m:msubsup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mo>+</m:mo> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msubsup> <m:mo>.</m:mo> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:mfenced> </m:math> <jats:tex-math> \\begin{cases}\\quad \\hfill &amp; {\\left(-{\\Delta}\\right)}^{s}u\\left(x\\right)=f\\left(u\\left(x\\right)\\right),\\qquad x\\in {\\mathbb{R}}_{+}^{n},\\hfill \\\\ \\quad \\hfill &amp; \\qquad u\\left(x\\right){ &gt;}0,\\qquad x\\in {\\mathbb{R}}_{+}^{n},\\hfill \\\\ \\quad \\hfill &amp; \\qquad u\\left(x\\right)=0,\\qquad x\\notin {\\mathbb{R}}_{+}^{n}.\\hfill \\end{cases}. </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0102_ineq_003.png\" /> </jats:alternatives> </jats:inline-formula>. We prove the positive solutions are monotonic increasing in the <jats:italic>x</jats:italic> <jats:sub>1</jats:sub>-direction assuming <jats:italic>u</jats:italic>(<jats:italic>x</jats:italic>) grows no faster than |<jats:italic>x</jats:italic>|<jats:sup> <jats:italic>γ</jats:italic> </jats:sup> with <jats:italic>γ</jats:italic> ∈ (0, 2<jats:italic>s</jats:italic>) for |<jats:italic>x</jats:italic>| large. To start with, we develop a maximum principle on the narrow region. Then we apply a direct method of the moving planes for the fractional Laplacian to derive the monotonicity. As an application of the monotonicity result, we use it to prove nonexistence of bounded positive solutions in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msubsup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mo>+</m:mo> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msubsup> </m:math> <jats:tex-math> ${\\mathbb{R}}_{+}^{n}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0102_ineq_004.png\" /> </jats:alternatives> </jats:inline-formula> for <jats:italic>f</jats:italic>(<jats:italic>u</jats:italic>) = <jats:italic>u</jats:italic> <jats:sup> <jats:italic>p</jats:italic> </jats:sup>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mi>p</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mfenced close=\")\" open=\"(\"> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mfrac> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> <m:mo>+</m:mo> <m:mn>2</m:mn> <m:mi>s</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> <m:mo>−</m:mo> <m:mn>2</m:mn> <m:mi>s</m:mi> </m:mrow> </m:mfrac> </m:mrow> </m:mfenced> </m:mrow> </m:math> <jats:tex-math> $p\\in \\left(1,\\frac{n-1+2s}{n-1-2s}\\right)$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0102_ineq_005.png\" /> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"26 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A semilinear Dirichlet problem involving the fractional Laplacian in R+ n\",\"authors\":\"Yan Li\",\"doi\":\"10.1515/ans-2023-0102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the Dirichelt problem involving the fractional Laplacian in the upper half-space <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:msubsup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mo>+</m:mo> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msubsup> <m:mo>=</m:mo> <m:mfenced close=\\\"}\\\" open=\\\"{\\\"> <m:mrow> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> <m:mo stretchy=\\\"false\\\">∣</m:mo> <m:msub> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> </m:mrow> </m:mfenced> </m:math> <jats:tex-math> ${\\\\mathbb{R}}_{+}^{n}=\\\\left\\\\{x\\\\in {\\\\mathbb{R}}^{n}\\\\mid {x}_{1}{ &gt;}0\\\\right\\\\}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0102_ineq_002.png\\\" /> </jats:alternatives> </jats:inline-formula>: <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:mfenced close=\\\"\\\" open=\\\"{\\\"> <m:mrow> <m:mtable> <m:mtr> <m:mtd columnalign=\\\"left\\\"> <m:mtext> </m:mtext> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:msup> <m:mrow> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mo>−</m:mo> <m:mi mathvariant=\\\"normal\\\">Δ</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> </m:msup> <m:mi>u</m:mi> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mi>f</m:mi> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>u</m:mi> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mspace width=\\\"2em\\\" /> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msubsup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mo>+</m:mo> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msubsup> <m:mo>,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\\\"left\\\"> <m:mtext> </m:mtext> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mspace width=\\\"2em\\\" /> <m:mspace width=\\\"0.3333em\\\" /> <m:mspace width=\\\"0.3333em\\\" /> <m:mi>u</m:mi> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mspace width=\\\"2em\\\" /> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msubsup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mo>+</m:mo> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msubsup> <m:mo>,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\\\"left\\\"> <m:mtext> </m:mtext> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mspace width=\\\"2em\\\" /> <m:mspace width=\\\"0.3333em\\\" /> <m:mspace width=\\\"0.3333em\\\" /> <m:mi>u</m:mi> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mspace width=\\\"2em\\\" /> <m:mi>x</m:mi> <m:mo>∉</m:mo> <m:msubsup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mo>+</m:mo> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msubsup> <m:mo>.</m:mo> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:mfenced> </m:math> <jats:tex-math> \\\\begin{cases}\\\\quad \\\\hfill &amp; {\\\\left(-{\\\\Delta}\\\\right)}^{s}u\\\\left(x\\\\right)=f\\\\left(u\\\\left(x\\\\right)\\\\right),\\\\qquad x\\\\in {\\\\mathbb{R}}_{+}^{n},\\\\hfill \\\\\\\\ \\\\quad \\\\hfill &amp; \\\\qquad u\\\\left(x\\\\right){ &gt;}0,\\\\qquad x\\\\in {\\\\mathbb{R}}_{+}^{n},\\\\hfill \\\\\\\\ \\\\quad \\\\hfill &amp; \\\\qquad u\\\\left(x\\\\right)=0,\\\\qquad x\\\\notin {\\\\mathbb{R}}_{+}^{n}.\\\\hfill \\\\end{cases}. </jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0102_ineq_003.png\\\" /> </jats:alternatives> </jats:inline-formula>. We prove the positive solutions are monotonic increasing in the <jats:italic>x</jats:italic> <jats:sub>1</jats:sub>-direction assuming <jats:italic>u</jats:italic>(<jats:italic>x</jats:italic>) grows no faster than |<jats:italic>x</jats:italic>|<jats:sup> <jats:italic>γ</jats:italic> </jats:sup> with <jats:italic>γ</jats:italic> ∈ (0, 2<jats:italic>s</jats:italic>) for |<jats:italic>x</jats:italic>| large. To start with, we develop a maximum principle on the narrow region. Then we apply a direct method of the moving planes for the fractional Laplacian to derive the monotonicity. As an application of the monotonicity result, we use it to prove nonexistence of bounded positive solutions in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:msubsup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mo>+</m:mo> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msubsup> </m:math> <jats:tex-math> ${\\\\mathbb{R}}_{+}^{n}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0102_ineq_004.png\\\" /> </jats:alternatives> </jats:inline-formula> for <jats:italic>f</jats:italic>(<jats:italic>u</jats:italic>) = <jats:italic>u</jats:italic> <jats:sup> <jats:italic>p</jats:italic> </jats:sup>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:mi>p</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:mfenced close=\\\")\\\" open=\\\"(\\\"> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mfrac> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> <m:mo>+</m:mo> <m:mn>2</m:mn> <m:mi>s</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> <m:mo>−</m:mo> <m:mn>2</m:mn> <m:mi>s</m:mi> </m:mrow> </m:mfrac> </m:mrow> </m:mfenced> </m:mrow> </m:math> <jats:tex-math> $p\\\\in \\\\left(1,\\\\frac{n-1+2s}{n-1-2s}\\\\right)$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0102_ineq_005.png\\\" /> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":7191,\"journal\":{\"name\":\"Advanced Nonlinear Studies\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nonlinear Studies\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ans-2023-0102\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2023-0102","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究涉及上半空间 R + n = x ∈ R n ∣ x 1 > 0 ${mathbb{R}}_{+}^{n}=\left\{x\in {mathbb{R}}^{n}\mid {x}_{1}{ >}0\right\}$ : ( - Δ ) s u ( x ) = f ( u ( x ) ) , x ∈ R + n , u ( x ) > 0 , x ∈ R + n , u ( x ) = 0 , x ∉ R + n 。 \begin{cases}\quad \hfill & {\left(-{\Delta}\right)}^{s}u\left(x\right)=f\left(u\left(x\right)\right),\qquad x\in {mathbb{R}}_{+}^{n},\hfill \\quad \hfill &;\qquad u\left(x\right){ >}0,\qquad x\in {\mathbb{R}}_{+}^{n},\hfill \\quad \hfill & \qquad u\left(x\right)=0,\qquad x\notin {\mathbb{R}}_{+}^{n}.\hfill \end{cases}. .我们证明正解在 x 1 方向上是单调递增的,假设 u(x) 的增长速度不超过 |x| γ,且 γ ∈ (0, 2s)为 |x| 大。首先,我们建立了狭长区域的最大原则。然后,我们应用分数拉普拉卡方移动平面的直接方法来推导单调性。作为单调性结果的一个应用,我们用它来证明 f(u) = u p , p∈ 1 , n - 1 + 2 s n - 1 - 2 s $p\in \left(1,\frac{n-1+2s}{n-1-2s}\right)$ 的有界正解在 R + n ${mathbb{R}}_{+}^{n}$ 中不存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A semilinear Dirichlet problem involving the fractional Laplacian in R+ n
We investigate the Dirichelt problem involving the fractional Laplacian in the upper half-space R + n = x R n x 1 > 0 ${\mathbb{R}}_{+}^{n}=\left\{x\in {\mathbb{R}}^{n}\mid {x}_{1}{ >}0\right\}$ : ( Δ ) s u ( x ) = f ( u ( x ) ) , x R + n , u ( x ) > 0 , x R + n , u ( x ) = 0 , x R + n . \begin{cases}\quad \hfill & {\left(-{\Delta}\right)}^{s}u\left(x\right)=f\left(u\left(x\right)\right),\qquad x\in {\mathbb{R}}_{+}^{n},\hfill \\ \quad \hfill & \qquad u\left(x\right){ >}0,\qquad x\in {\mathbb{R}}_{+}^{n},\hfill \\ \quad \hfill & \qquad u\left(x\right)=0,\qquad x\notin {\mathbb{R}}_{+}^{n}.\hfill \end{cases}. . We prove the positive solutions are monotonic increasing in the x 1-direction assuming u(x) grows no faster than |x| γ with γ ∈ (0, 2s) for |x| large. To start with, we develop a maximum principle on the narrow region. Then we apply a direct method of the moving planes for the fractional Laplacian to derive the monotonicity. As an application of the monotonicity result, we use it to prove nonexistence of bounded positive solutions in R + n ${\mathbb{R}}_{+}^{n}$ for f(u) = u p , p 1 , n 1 + 2 s n 1 2 s $p\in \left(1,\frac{n-1+2s}{n-1-2s}\right)$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信