具有可变系数的非线性薛定谔方程的 L 2 归一化解的存在性和多重性

IF 2.1 2区 数学 Q1 MATHEMATICS
Norihisa Ikoma, Mizuki Yamanobe
{"title":"具有可变系数的非线性薛定谔方程的 L 2 归一化解的存在性和多重性","authors":"Norihisa Ikoma, Mizuki Yamanobe","doi":"10.1515/ans-2022-0056","DOIUrl":null,"url":null,"abstract":"The existence of <jats:italic>L</jats:italic> <jats:sup>2</jats:sup>–normalized solutions is studied for the equation <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mi>u</m:mi> <m:mo>+</m:mo> <m:mi>μ</m:mi> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mi>f</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mtext> </m:mtext> <m:mtext> </m:mtext> <m:mtext>in</m:mtext> <m:mspace width=\"0.3333em\" /> <m:msup> <m:mrow> <m:mi mathvariant=\"bold\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> <m:mo>,</m:mo> <m:mspace width=\"1em\" /> <m:msub> <m:mrow> <m:mo>∫</m:mo> </m:mrow> <m:mrow> <m:msup> <m:mrow> <m:mi mathvariant=\"bold\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:mrow> </m:msub> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mspace width=\"0.17em\" /> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>x</m:mi> <m:mo>=</m:mo> <m:mi>m</m:mi> <m:mo>.</m:mo> </m:math> <jats:tex-math> $-{\\Delta}u+\\mu u=f\\left(x,u\\right)\\quad \\quad \\text{in} {\\mathbf{R}}^{N},\\quad {\\int }_{{\\mathbf{R}}^{N}}{u}^{2} \\mathrm{d}x=m.$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2022-0056_ineq_001.png\" /> </jats:alternatives> </jats:inline-formula> Here <jats:italic>m</jats:italic> &gt; 0 and <jats:italic>f</jats:italic>(<jats:italic>x</jats:italic>, <jats:italic>s</jats:italic>) are given, <jats:italic>f</jats:italic>(<jats:italic>x</jats:italic>, <jats:italic>s</jats:italic>) has the <jats:italic>L</jats:italic> <jats:sup>2</jats:sup>-subcritical growth and (<jats:italic>μ</jats:italic>, <jats:italic>u</jats:italic>) ∈ R × <jats:italic>H</jats:italic> <jats:sup>1</jats:sup>(R <jats:sup> <jats:italic>N</jats:italic> </jats:sup>) are unknown. In this paper, we employ the argument in Hirata and Tanaka (“Nonlinear scalar field equations with <jats:italic>L</jats:italic> <jats:sup>2</jats:sup> constraint: mountain pass and symmetric mountain pass approaches,” <jats:italic>Adv. Nonlinear Stud.</jats:italic>, vol. 19, no. 2, pp. 263–290, 2019) and find critical points of the Lagrangian function. To obtain critical points of the Lagrangian function, we use the Palais–Smale–Cerami condition instead of Condition (PSP) in Hirata and Tanaka (“Nonlinear scalar field equations with <jats:italic>L</jats:italic> <jats:sup>2</jats:sup> constraint: mountain pass and symmetric mountain pass approaches,” <jats:italic>Adv. Nonlinear Stud.</jats:italic>, vol. 19, no. 2, pp. 263–290, 2019). We also prove the multiplicity result under the radial symmetry.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"305 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The existence and multiplicity of L 2-normalized solutions to nonlinear Schrödinger equations with variable coefficients\",\"authors\":\"Norihisa Ikoma, Mizuki Yamanobe\",\"doi\":\"10.1515/ans-2022-0056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The existence of <jats:italic>L</jats:italic> <jats:sup>2</jats:sup>–normalized solutions is studied for the equation <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mo>−</m:mo> <m:mi mathvariant=\\\"normal\\\">Δ</m:mi> <m:mi>u</m:mi> <m:mo>+</m:mo> <m:mi>μ</m:mi> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mi>f</m:mi> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mtext> </m:mtext> <m:mtext> </m:mtext> <m:mtext>in</m:mtext> <m:mspace width=\\\"0.3333em\\\" /> <m:msup> <m:mrow> <m:mi mathvariant=\\\"bold\\\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> <m:mo>,</m:mo> <m:mspace width=\\\"1em\\\" /> <m:msub> <m:mrow> <m:mo>∫</m:mo> </m:mrow> <m:mrow> <m:msup> <m:mrow> <m:mi mathvariant=\\\"bold\\\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:mrow> </m:msub> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mspace width=\\\"0.17em\\\" /> <m:mi mathvariant=\\\"normal\\\">d</m:mi> <m:mi>x</m:mi> <m:mo>=</m:mo> <m:mi>m</m:mi> <m:mo>.</m:mo> </m:math> <jats:tex-math> $-{\\\\Delta}u+\\\\mu u=f\\\\left(x,u\\\\right)\\\\quad \\\\quad \\\\text{in} {\\\\mathbf{R}}^{N},\\\\quad {\\\\int }_{{\\\\mathbf{R}}^{N}}{u}^{2} \\\\mathrm{d}x=m.$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2022-0056_ineq_001.png\\\" /> </jats:alternatives> </jats:inline-formula> Here <jats:italic>m</jats:italic> &gt; 0 and <jats:italic>f</jats:italic>(<jats:italic>x</jats:italic>, <jats:italic>s</jats:italic>) are given, <jats:italic>f</jats:italic>(<jats:italic>x</jats:italic>, <jats:italic>s</jats:italic>) has the <jats:italic>L</jats:italic> <jats:sup>2</jats:sup>-subcritical growth and (<jats:italic>μ</jats:italic>, <jats:italic>u</jats:italic>) ∈ R × <jats:italic>H</jats:italic> <jats:sup>1</jats:sup>(R <jats:sup> <jats:italic>N</jats:italic> </jats:sup>) are unknown. In this paper, we employ the argument in Hirata and Tanaka (“Nonlinear scalar field equations with <jats:italic>L</jats:italic> <jats:sup>2</jats:sup> constraint: mountain pass and symmetric mountain pass approaches,” <jats:italic>Adv. Nonlinear Stud.</jats:italic>, vol. 19, no. 2, pp. 263–290, 2019) and find critical points of the Lagrangian function. To obtain critical points of the Lagrangian function, we use the Palais–Smale–Cerami condition instead of Condition (PSP) in Hirata and Tanaka (“Nonlinear scalar field equations with <jats:italic>L</jats:italic> <jats:sup>2</jats:sup> constraint: mountain pass and symmetric mountain pass approaches,” <jats:italic>Adv. Nonlinear Stud.</jats:italic>, vol. 19, no. 2, pp. 263–290, 2019). We also prove the multiplicity result under the radial symmetry.\",\"PeriodicalId\":7191,\"journal\":{\"name\":\"Advanced Nonlinear Studies\",\"volume\":\"305 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nonlinear Studies\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ans-2022-0056\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2022-0056","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了 R N 中方程 - Δ u + μ u = f ( x , u ) 的 L 2 归一化解的存在性 , ∫ R N u 2 d x = m . $-{Delta}u+\mu u=f\left(x,u\right)\quad \quad \text{in}{mathbf{R}}^{N},\quad {int }_{mathbf{R}}^{N}}{u}^{2}\这里 m > 0 和 f(x, s) 是给定的,f(x, s) 具有 L 2 次临界增长,且 (μ, u)∈ R × H 1(R N ) 是未知的。本文采用 Hirata 和 Tanaka 的论证("具有 L 2 约束的非线性标量场方程:山口和对称山口方法",《非线性研究》,第 19 卷第 2 期,第 263-290 页,2019 年),找到了拉格朗日函数的临界点。为了获得拉格朗日函数的临界点,我们使用了 Palais-Smale-Cerami 条件,而不是 Hirata 和 Tanaka("带 L 2 约束的非线性标量场方程:山口和对称山口方法",《非线性研究》,第 19 卷第 2 期,第 263-290 页,2019 年)中的条件 (PSP)。我们还证明了径向对称下的多重性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The existence and multiplicity of L 2-normalized solutions to nonlinear Schrödinger equations with variable coefficients
The existence of L 2–normalized solutions is studied for the equation Δ u + μ u = f ( x , u ) in R N , R N u 2 d x = m . $-{\Delta}u+\mu u=f\left(x,u\right)\quad \quad \text{in} {\mathbf{R}}^{N},\quad {\int }_{{\mathbf{R}}^{N}}{u}^{2} \mathrm{d}x=m.$ Here m > 0 and f(x, s) are given, f(x, s) has the L 2-subcritical growth and (μ, u) ∈ R × H 1(R N ) are unknown. In this paper, we employ the argument in Hirata and Tanaka (“Nonlinear scalar field equations with L 2 constraint: mountain pass and symmetric mountain pass approaches,” Adv. Nonlinear Stud., vol. 19, no. 2, pp. 263–290, 2019) and find critical points of the Lagrangian function. To obtain critical points of the Lagrangian function, we use the Palais–Smale–Cerami condition instead of Condition (PSP) in Hirata and Tanaka (“Nonlinear scalar field equations with L 2 constraint: mountain pass and symmetric mountain pass approaches,” Adv. Nonlinear Stud., vol. 19, no. 2, pp. 263–290, 2019). We also prove the multiplicity result under the radial symmetry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信